32-bit Microcontroller

CMOS

FR60Lite MB91245/S Series

MB91247/247S/248/248S/F248/F248S/MB91V245A

■ OVERVIEW

MB91245/S series is Fujitsu's general-purpose 32-bit RISC microcontroller, which is designed for embedded control applications that require high-speed real-time processing of consumer appliances. This microcontroller uses FR60Lite as its CPU, compatible with other products in the FR* family.
This series incorporates an LCD controller and stepping motor controller.

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

■ FEATURES

- FR60Lite CPU
- 32-bit RISC, load/store architecture, 5-stage pipeline
- Maximum operating frequency : 32 MHz (Source oscillation is 4 MHz with x 8 multiplier - PLL clock multiplier system)
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed : 1 instruction per cycle
- Instruction set optimized for embedded application : Memory-to-memory transfer, bit manipulation, barrel shift instructions etc.
- Instructions adapted for programming C language : Function entry/exit instructions, multiple-register load/store instructions.
- Register interlock function : Easier assembler coding enabled
- Built-in multiplier supported at the instruction level

Signed 32-bit multiplication : 5 cycles
Signed 16-bit multiplication : 3 cycles
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]
MB91245/S Series

(Continued)

- Interrupt (PC/PS save) : 6 cycles (16 priority levels)
- Harvard architecture allowing program access and data access to be executed simultaneously.
- Instruction set compatible with FR family

- Internal Peripheral Functions

- Internal ROM size \& ROM type

MASK ROM : 256 Kbytes (MB91248/S) / 128 Kbytes (MB91247/S)
Flash Memory : 256 Kbytes

- Internal RAM size : 16 Kbytes (MB91248/S, MB91F248/S) / 8 Kbytes (MB91247/S) / 32 Kbytes (MB91V245A)
- General-purpose ports : up to 120 ports (includes 4 input-only ports)
- 8/10-bit A/D converter (Sequential comparison type)

8/10-bit resolution : 32 channels
Conversion time : $3 \mu \mathrm{~s}(16 / 32 \mathrm{MHz})$
Set the PLL multiplier and the division ratio of peripheral circuit clocks so that the above conversion time is achieved.
32 MHz : Source oscillation (4 MHz) with x8 multiplier, divided by 1
16 MHz : Source oscillation with x8 multiplier, divided by 2

- External interrupt input : 8 channels
- Bit search module (for REALOS)

Search function to locate the position of the first bit that changes from " 1 " to " 0 " in one word, from the MSB (Most Significant Bit)

- UART (full duplex double buffer type) : 1 channel

Parity enable/disable selectable
Asynchronous clock operation (start-stop synchronization) and synchronous clock operation selectable Dedicated baud-rate timer (U-Timer) embedded in each channel
External clock can be used as transfer clock
Parity, frame, overrun error detection functions provided

- LIN-UART (full duplex double buffer type) : 3 channels

Synchronous/asynchronous clock operations selectable
Sync-break detection
Dedicated built-in baud-rate generator

- Stepping motor controller (SMC) : 6 channels

8-bit PWM with 4 high-current outputs for each channel

- 8/16-bit PPG timer : 8/4 channels
- 16-bit reload timer : 3 channels
- 16-bit free-run timer : 2 channels (ICU/OCU linkage)
- 16-bit pulse width counter : 1 channel
- Input capture : 4 channels (linked to ch. 0 and ch. 1 of free-run timer) ch. 0 linked to PWC
- Output compare : 2 channels (linked to ch. 0 of free-run timer)
- LCD controller : SEG00 to SEG31/COM0 to COM3 (shared with port)
- 16-bit timebase/watch dog timer
- Sound generator
- Real-time clock
- 32 kHz sub clock (not supported in single clock products)
- C-CAN : 2 channels
- Low power consumption modes : sleep mode, stop mode, watch mode
- Package : LQFP-144 (FPT-144P-M08)
- CMOS technology : $0.35 \mu \mathrm{~m}$
- Power supply voltage : 5 V (Internal logic : 3.3 V, I/O : 5.0 V (step-down circuit used))

MB91245/S Series

■ PRODUCT LINEUP

A table below shows the product lineup of the MB91245/S series. Embedded peripheral functions which are not listed are common functions.

	MB91V245A	MB91247/S	MB91248/S	MB91F248/S
ROM/Flash size	External SRAM	128 Kbytes	256 Kbytes	256 Kbytes
RAM size	32 Kbytes	8 Kbytes	16 Kbytes	16 Kbytes
External interrupt	8 channels			
DMA Controller	5 channels			
A/D Converter	32 channels			
UART	1 channel			
LIN-UART	3 channels			
Stepping Motor Controller	6 channels			
8/16-bit PPG	8 channels/4 channels			
16-bit Reload Timer	3 channels			
16-bit Free Run Timer	2 channels			
16-bit Pulse Width Counter	1 channel			
Input Capture Unit	4 channels			
Output Compare Unit	2 channels			
LCD Controller	4 COM, 32 SEG			
Sound Generator	1 channel			
Real Time Clock	Yes			
32 kHz Sub Clock	Yes	Yes/No (S series)	Yes/No (S series)	Yes/No (S series)
External bus	Addr 16 bits Data 16 bits			
Others	EVA device	MASK ROM product	MASK ROM product	Flash memory product
On Chip Debug Support Unit	DSU4	-		
C-CAN unit	2 channels 32-message buffer			

MB91245/S Series

PIN ASSIGNMENT

(FPT-144P-M08)

- PIN DESCRIPTIONS

Pin no.	Pin name	I/O circuit type*	Function
1 to 4	P24 to P27	F	General purpose I/O port pins
	SEG04 to SEG07		SEG output pin for LCDC
	A04 to A07		Bits 04 to 07 pins of external address bus
5 to 12	P30 to P37	F	General purpose I/O port pins
	SEG08 to SEG15		SEG output pins for LCDC
	A08 to A15		Bits 08 to 15 pins of external address bus
13 to 15	P10 to P12	G	General purpose I/O port pins
	SEG16 to SEG18		SEG output pins for LCDC
	D08 to D10		Bits 08 to 10 pins of external data bus
16	X0A	B	Sub clock (oscillation) input
17	X1A	B	Sub clock (oscillation) output
18	Vcc	-	Power supply pins
19	Vss	-	GND pins
20	Vcc3C	-	Capacitor connection pin for internal regulator
21 to 25	P13 to P17	G	General purpose I/O port pins
	SEG19 to SEG23		SEG output pins for LCDC
	D11 to D15		Bits 11 to 15 pins of external data bus
26 to 31	P00 to P05	G	General purpose I/O port pins
	SEG24 to SEG29		SEG output pins for LCDC
	INT0 to INT5		External interrupt input pins
	D00 to D05		Bits 00 to 05 pins of external data bus
32	P06	G	General purpose I/O port pin
	SEG30		SEG output pins for LCDC
	D06		Bit 06 pin of external data bus
33	P07	G	General purpose I/O port pin
	SEG31		SEG output pin for LCDC
	$\overline{\text { ATG }}$		External trigger input pin at using of A/D converter
	D07		Bit 07 pin of external data bus
34	P70	1	General purpose I/O port pin
	INT6		External interrupt input pin
	RX0		RXO input pin of CANO
35	P71	1	General purpose I/O port pin
	TX0		TX0 output pin of CANO

(Continued)

MB91245/S Series

Pin no.	Pin name	I/O circuit type*	Function
36	P72	I	General purpose I/O port pin
	INT7		External interrupt input pin
	RX1		RX1 input pin of CAN1
37	P73	1	General purpose I/O port pin
	TX1		TX1 output pin of CAN1
38	DVcc	-	Power supply input pins for SMC
39	DVss	-	GND pins for SMC
40	PB0	H	General purpose I/O port pin
	PWM1P0		PWM output pin of stepping motor controller
41	PB1	H	General purpose I/O port pin
	PWM1M0		PWM output pin of stepping motor controller
42	PB2	H	General purpose I/O port pin
	PWM2P0		PWM output pin of stepping motor controller
43	PB3	H	General purpose I/O port pin
	PWM2M0		PWM output pin of stepping motor controller
44	PB4	H	General purpose I/O port pin
	PWM1P1		PWM output pin of stepping motor controller
45	PB5	H	General purpose I/O port pin
	PWM1M1		PWM output pin of stepping motor controller
46	PB6	H	General purpose I/O port pin
	PWM2P1		PWM output pin of stepping motor controller
47	PB7	H	General purpose I/O port pin
	PWM2M1		PWM output pin of stepping motor controller
48	PC0	H	General purpose I/O port pin
	PWM1P2		PWM output pin of stepping motor controller
49	PC1	H	General purpose I/O port pin
	PWM1M2		PWM output pin of stepping motor controller
50	PC2	H	General purpose I/O port pin
	PWM2P2		PWM output pin of stepping motor controller
51	PC3	H	General purpose I/O port pin
	PWM2M2		PWM output pin of stepping motor controller
52	DVcc	-	Power supply input pins for SMC
53	DVss	-	GND pins for SMC

(Continued)

MB91245/S Series

Pin no .	Pin name	I/O circuit type*	Function
54 to 61	P97 to P90	E	General-purpose I/O port pins : Valid when analog input is prohibited
	AN31 to AN24		Analog input pins of A/D converter : Valid when ADER register is set to analog input
62 to 69	P87 to P80	E	General-purpose I/O port pins : Valid when analog input is prohibited
	AN23 to AN16		Analog input pins of A/D converter : Valid when ADER register is set to analog input
70	AV ${ }_{\text {cc }}$	-	Analog power supply input pin for A/D converter
71	AVRH	-	Analog base voltage input pin for A/D converter
72	AVss/AVRL	-	Analog GND/analog base low voltage input pin for A/D converter
73 to 80	P60 to P67	E	General-purpose I/O port pins : Valid when analog input is prohibited
	AN0 to AN7		Analog input pins of A/D converter : Valid when ADER register is set to analog input
81 to 88	PF0 to PF7	E	General-purpose I/O port pins : Valid when analog input is prohibited
	AN8 to AN15		Analog input pins of A/D converter : Valid when ADER register is set to analog input
89	DVcc	-	Power supply input pins for SMC
90	DVss	-	GND pins for SMC
91	PAO	H	General purpose I/O port pin
	PWM1P3		PWM output pin of stepping motor controller
92	PA1	H	General purpose I/O port pin
	PWM1M3		PWM output pin of stepping motor controller
93	PA2	H	General purpose I/O port pin
	PWM2P3		PWM output pin of stepping motor controller
94	PA3	H	General purpose I/O port pin
	PWM2M3		PWM output pin of stepping motor controller
95	PE0	H	General purpose I/O port pin
	PWM1P4		PWM output pin of stepping motor controller
96	PE1	H	General purpose I/O port pin
	PWM1M4		PWM output pin of stepping motor controller
97	PE2	H	General purpose I/O port pin
	PWM2P4		PWM output pin of stepping motor controller
98	PE3	H	General purpose I/O port pin
	PWM2M4		PWM output pin of stepping motor controller

(Continued)

MB91245/S Series

Pin no.	Pin name	I/O circuit type*	Function
99	PE4	H	General purpose I/O port pin
	PWM1P5		PWM output pin of stepping motor controller
100	PE5	H	General purpose I/O port pin
	PWM1M5		PWM output pin of stepping motor controller
101	PE6	H	General purpose I/O port pin
	PWM2P5		PWM output pin of stepping motor controller
102	PE7	H	General purpose I/O port pin
	PWM2M5		PWM output pin of stepping motor controller
103	DV ${ }_{\text {cc }}$	-	Power supply input pins for SMC
104	DVss	-	GND pins for SMC
105	MOD2	D	Mode pin 2 : Used to set basic operating mode and required to be connected to Vcc or Vss
106	MOD1	D	Mode pin 1 : Used to set basic operating mode and required to be connected to Vcc or Vss
107	MODO	D	Mode pin 0 : Used to set basic operating mode and required to be connected to Vcc or Vss
108	$\overline{\text { INIT }}$	C	External reset input pin
109	P40	1	General-purpose I/O port pin : Valid when UARTO data input is prohibited
	SINO		UARTO serial data input pin, requiring output by ports to be stopped while UARTO is performing input operation, except when executed intentionally, as this input is always in use
110	P41	1	General-purpose I/O port pin : Valid when UARTO data output is prohibited
	SOTO		UARTO serial data output pin : Valid when UARTO data output is permitted
111	P42	I	General-purpose I/O port pin : Valid when clock output of UARTO is prohibited
	SCKO		UARTO clock input and output pin for serial communication: Valid when clock output of UARTO is permitted
112	P43	1	General-purpose I/O port pin : Valid when LIN-UARTO data input is prohibited
	SIN3		LIN-UARTO serial data input pin, requiring output by ports to be stopped while LIN-UARTO is performing input operation, except when executed intentionally, as this input is always in use
113	P44	1	General-purpose I/O port pin : Valid when LIN-UARTO data output is prohibited
	SOT3		LIN-UARTO serial data output pin : Valid when data output of LIN-UARTO is permitted

(Continued)

MB91245/S Series

Pin no.	Pin name	I/O circuit type*	Function
114	P45	1	General-purpose I/O port pin : Valid when clock output of LIN-UARTO is prohibited
	SCK3		LIN-UARTO clock input and output pin for serial communication : Valid when clock output of LIN-UARTO is permitted
115	P50	1	General-purpose I/O port pin
	SIN4		Serial data input pin of LIN-UART1 : LIN-UART1, requiring output by ports to be stopped while LIN-UART1 is performing input operation, except when executed intentionally, as this input is always in use
	CKO		External clock input pin of free-run timer 0
	$\overline{\text { CSO }}$		Output pin of chip select 0 : Valid when external bus mode is selected
116	P51	1	General-purpose I/O port pin
	SOT4		LIN-UART1 serial data output pin : Valid when data output of LIN-UART1 is permitted
	$\overline{\mathrm{CS1}}$		Output pin of chip select 1 : Valid when output of chip select 1 is permitted
117	P52	1	General-purpose I/O port pin
	SCK4		LIN-UART1 clock input and output pin for serial communication : Valid when clock output of LIN-UART1 is permitted
	CS2		Output pin of chip select 2 : Valid when output of chip select 2 is permitted
118	P53	1	General-purpose I/O port pin
	SIN5		Serial data input pin of LIN-UART2 : LIN-UART2, requiring output by ports to be stopped while LIN-UART2 is performing input operation, except when executed intentionally, as this input is always in use
	CK1		External clock input pin of free-run timer 1
	$\overline{\text { CS3 }}$		Output of chip select 3 : Valid when output of chip select 3 is permitted
119	P54	I	General-purpose I/O port pin
	SOT5		Serial data output pin of LIN-UART2 : Valid when data output of LIN-UART2 is permitted
	$\overline{\mathrm{RD}}$		Read strobe output pin of external bus : Valid when external bus mode is selected
120	P55	1	General-purpose I/O port pin
	SCK5		LIN-UART2 clock input and output pin for serial communication : Valid when clock output of LIN-UART2 is permitted
	$\overline{\text { WRO }}$		Write strobe output pin of external bus : Valid when $\overline{\text { WRO }}$ output is permitted in external bus mode

(Continued)

MB91245/S Series

Pin no .	Pin name	I/O circuit type*	Function
121	P56	I	General-purpose I/O port pin
	OUTO		Output compare output pin
	WR1		Write strobe output pin of external bus : Valid when WR1 output is permitted in external bus mode
122	P57	J	General-purpose I/O port pin
	OUT1		Output compare output pin
	RDY		External ready input pin : Valid when external ready input is permitted
123	P46	1	General-purpose I/O port pin
	SGA		Sound generator pin
	$\overline{\text { AS }}$		External address strobe output pin : Valid when address strobe output is permitted
124	P47	1	General-purpose I/O port pin
	SGO		Sound generator pin
	SYSCLK		System clock output pin : Valid when system clock output is permitted and outputs the same clock as the operating frequency of external bus (Output is stopped in STOP mode)
125	PGO	1	General-purpose I/O port pin
	PPGO		Output of PPG timer 0 : Valid when output of PPG timer 0 is permitted
126	Vcc	-	Power supply pins
127	Vss	-	GND pins
128	X1	A	Main clock (oscillation) output pin
129	X0	A	Main clock (oscillation) input pin
130	PG1	1	General-purpose I/O port pin
	TOT0		Output pin for reload timer
	PPG2		Output pin of PPG timer 2 : Valid when output of PPG timer 2 is permitted
131	PG2	1	General-purpose I/O port pin
	TOT1		Output pin for reload timer
	PPG4		Output pin of PPG timer 4 : Valid when output of PPG timer 4 is permitted
132	PG3	1	General-purpose I/O port pin
	TOT2		Output pin for reload timer
	PPG6		Output pin of PPG timer 6 : Valid when output of PPG timer 6 is permitted

(Continued)
(Continued)

Pin no.	Pin name	I/O circuit type*	Function
133	PDO	K	General-purpose I/O port pin
	TINO		Event input pin for reload timer
	INO		Trigger input pin of input capture 0 : This sets input capture to trigger input and is enabled when input port is set up. When set as input capture input, it requires output by ports to be stopped, except when executed intentionally, as this input is always used.
	PWC0		Input pin of pulse width counter 0 of PWC0 : Valid when input of pulse width counter 0 of PWCO is permitted
134	PD1	K	General-purpose I/O port pin
	TIN1		Event input pin for reload timer
	IN1		Trigger input pin of input capture 1 : This sets input capture to trigger input and is enabled when input port is set up. When set as input capture input, it requires output by ports to be stopped, except when executed intentionally, as this input is always used.
135	PD2	K	General-purpose I/O port pin
	TIN2		Event input pin for reload timer
	IN2		Trigger input pin of input capture 2 : This sets input capture to trigger input and is enabled when input port is set up. When set as input capture input, it requires output by ports to be stopped, except when executed intentionally, as this input is always used.
136	PD3	K	General-purpose I/O port pin
	IN3		Trigger input pin of input capture 3 : This sets input capture to trigger input and is enabled when input port is set up. When set as input capture input, it requires output by ports to be stopped, except when executed intentionally, as this input is always used.
137 to 140	PD4 to PD7	F	General-purpose I/O port pin
	COM0 to COM3		Output pin of COM0 to COM3 of LCDC
	$\begin{aligned} & \text { PPG1, PPG3, } \\ & \text { PPG5, PPG7 } \end{aligned}$		Output pin of PPG timer 1,3,5 and 7 : Valid when output of PPG timer 1, 3, 5 and 7 is permitted
141 to 144	P20 to P23	F	General purpose I/O port pins
	SEG00 to SEG03		SEG output pins for LCDC
	A00 to A03		Bits 00 to 03 pins of external address bus

[^1]
MB91245/S Series

I/O CIRCUIT TYPE

Group	Circuit Type	Remarks
A		For high speed (source oscillation of main clock) - Oscillation circuit - Feedback resistance X0 : approx. $1 \mathrm{M} \Omega$
B		For low speed (source oscillation of sub clock) - Oscillation circuit - Feedback resistance XOA : approx. $7 \mathrm{M} \Omega$
C		- CMOS hysteresis input - Pull-up resistor provided - No standby control

(Continued)

Group	Circuit Type	Remarks
D		- MASK ROM product Hysteresis input Pull-down resistor provided only for MOD2 \& MOD1 - Flash memory product Hysteresis input High-voltage control for Flash test provided
E		- CMOS output (4 mA) - Hysteresis (Automotive level) input (Standby control provided) - Analog input (Analog input is valid when the corresponding ADER bit is set to 1 .)
F		- CMOS output (4 mA) - LCDC output - Hysteresis (Automotive level) input (Standby control provided)

MB91245/S Series

Group	Circuit Type	Remarks
G		- CMOS output (4 mA) - LCDC output - Hysteresis (Automotive level) input (Standby control provided) - Hysteresis (CMOS level) input (Standby control provided)
H		- CMOS output High current output for PWM (30 mA) - Hysteresis (Automotive level) input (Standby control provided)
1		- CMOS output (4 mA) - Hysteresis (Automotive level) input (Standby control provided)

(Continued)
(Continued)

Group	Circuit Type	Remarks
J		- CMOS output (4 mA) - Hysteresis (Automotive level) input (Standby control provided) - Hysteresis (CMOS level) input (Standby control provided)
K		- Hysteresis (Automotive level) input (Standby control provided)

MB91245/S Series

HANDLING DEVICES

- Preventing Latch-up

Latch-up may occur in a CMOS IC, if a voltage greater than Vcc pin or less than Vss pin is applied to input and output pin, or if an above-rating voltage is applied between Vcc and Vss . When latch-up occurs, it may significantly increase the power supply current, and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating.

- Treatment of Unused Input Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by performing a pull-up or pull-down with a resistance of $2 \mathrm{k} \Omega$ or more. An unused I/O pin should be set to the output status and left open. When set to the input status, it should be handled in the same way as an input pin.

- About power supply pins

If there are multiple $V_{c c}$ and $V_{s s}$ pins, from the point of view of device design pins to be of the same potential are connected inside the device to prevent such malfunctioning as latch-up. However, you must connect all the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the Vcc and $\mathrm{V} s \mathrm{p}$ pins of this device at the low impedance.

Furthermore, it is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between Vcc and Vss near this device.

This device incorporates a regulator. When using the device with 5 V power supply, apply that power supply to the Vcc pin and always connect a $1 \mu \mathrm{~F}$ or greater capacitor to the V cc 3 C for the regulator.

Example of power supply connection

- Crystal oscillator circuit

Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the PC board such that $\mathrm{X0} / \mathrm{X} 1$ pins, $\mathrm{X0A} / \mathrm{X} 1 \mathrm{~A}$ pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to the ground are placed as near one another as possible. When routing the X0 and X1 signals, they should be shielded for use on the board. Caution must be taken especially when using a pin next to the X 0 .
It is strongly recommended to design the PC board artwork with the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins surrounded by ground plane because stable operation can be expected with such a layout.

In addition, a sub clock is required even when a dual clock product is used as a single clock product.
When using MB91F248S/248S/247S, connect the X0A pin to GND and leave the X1A pin open.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

- Mode pins (MOD0 to MOD2)

These pins should be connected directly to Vcc or Vss pins. To prevent the device erroneously switching to test mode due to noise, design the PC board such that the distance between the mode pins and Vcc or Vss pins is as short as possible and the connection impedance is now.

- Operation at start-up

Always use the INIT pin to perform a setting initialization reset (INIT) after power-on. Immediately after poweron, hold the low level input to the INIT pin for the stabilization wait time required for the oscillator circuit, to take the oscillation stabilization wait time for the oscillator circuit.
For INIT via the $\overline{\text { INIT }}$ pin, the oscillation stabilization wait time setting is initialized to the minimum value.

- Source oscillation input upon power-on

When power-on, always input the clock for the duration of the oscillation stabilization delay time.

- Treatment of power supply pins on A / D converter

Connect to ensure " $A V \mathrm{Vc}=\mathrm{AVRH}=\mathrm{Vcc}$ and $A V_{s s}=\mathrm{V}_{\mathrm{ss}}$ " even if the A / D converter is not in use.

- Power-on sequence for power supply analog input of A / D converter

Always supply power to the A/D converter (AVcc and AVRH) and apply analog input (AN0 to AN 31) after turning on the digital power supply (Vcc). Also, turn off the power supply for the A / D converter and analog input before turning off the digital power supply ($\mathrm{V} c \mathrm{c}$). In so doing, the power supply must be turn on and off so that AVRH does not exceed $A V c c$. Even when using a pin shared with analog input as an input port, ensure that the input voltage does not exceed $A V c c$ (There is no problem in turning on or off the analog and digital power supplies at the same time).

- Handling of power supply for high-current output buffer pin (DVcc, DVss)

Always apply power to high-current output buffer pins (DV cc) after turning on the digital power supply (Vcc). In addition, turn off the power supply for the high-current output buffer pins before turning off the digital power supply (Vcc).
Apply the same power as for high-current output buffer pins even when using such pins as general-purpose ports. (There is no problem in turning on or off the power supply for the high-current output buffer pins and the digital power supply at the same time.)

Always use the GND pin (DVss) for the high-current output buffer pin at the same potential as the digital GND (Vss).

MB91245/S Series

- About switching from main clock mode to sub clock mode or stop mode

Always stop the main clock after switching the main clock mode to the sub clock mode or stop mode. Also secure the oscillation stabilization wait time when returning from the sub clock mode or stop mode to the main clock mode.

- About Flash write

Note that Flash write is not possible in the sub mode.

MB91245/S Series

BLOCK DIAGRAM

*: The sub clock is not supported in single clock products.

MB91245/S Series

MEMORY SPACE

- Memory space

The FR family has of 4 Gbytes logical address space (2^{32} addresses) linearly accessible to the CPU space.

- Direct addressing area

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during on instruction.
The direct area varies depending on the size of data to be accessed as follows.
\rightarrow Byte data access : 000 to 0FFH
\rightarrow Halfword data access : 000 to 1 FFH
\rightarrow Word data access : 000 to 3FFH

MB91245/S Series

MEMORY MAP

MB91V245A

MB91245/S Series

MB91F248/S

MB91248/S

Note : Each mode is set depending on the mode vector fetch after $\overline{\text { INIT }}$ is negated (For mode settings, refer to MODE SETTINGS").

MB91245/S Series

MB91247/S

Note : Each mode is set depending on the mode vector fetch after $\overline{\mathrm{INIT}}$ is negated (For mode settings, refer to MODE SETTINGS").

MB91245/S Series

MODE SETTINGS

The FR family, sets the operation mode using mode pins (MOD2 to MODO) and mode data.

- Mode pins

The mode pins (MOD2 to MODO) specify how the mode vector fetch and reset vector fetch is performed.
Other settings than these in the table are prohibited.

Mode pin			Mode name	Reset vector access area
MOD2	MOD1	MOD0		
0	0	0	Internal ROM mode vector	Internal
0	0	1	External ROM mode vector	External

- Mode data

Data written to the internal mode register (MODR) by mode vector fetch is called mode data.
After an operating mode has been set in the mode register the device operates in that operating mode.
The mode data is set by all reset sources. User programs cannot set data to the mode register.

Detailed description of mode data

Bit 31 to bit 24 are reserved.
Always set the value to " 00000111 B ". Normal operation is not guaranteed when a value other than " 00000111 b " is set.

Note : Mode data set in the mode vector must be placed as byte data at 0x000FFFF8 H .
Place the data in the most significant byte from bit 31 to bit 24 as the FR family uses the big endian system for byte endian.

Incorrect	0x000FFFF88	$31 \quad 2423$		1615	87
		XXXXXXXX	XXXXXXXX	XXXXXXXX	Mode Data
Correct	0x000FFFF8 ${ }^{\text {H }}$	Mode Data	XXXXXXXX	XXXXXXXX	XXXXXXXX
	0x000FFFFCH	Reset vector			

MB91245/S Series

I/O MAP

The following table shows the correspondence between the memory space area and each register of the peripheral resource.
[How to read the map]

Address	Register				Block
	+ 0	+ 1	+ 2	+ 3	
000000н	PDRO [R/W] B $\triangle \times X X X X X X X A$	PDR1 [R/W] B XXXXXXXX	PDR2 [R/W] B XXXXXXXX	PDR3 [R/W] B XXXXXXX	T-unit Port data register
		Read/Write (B : byte, H Initial value _ Register na register at 4	attribute, Acces : halfword, W : after reset (First-column $n+1$, etc.)	unit ord) register at add	$4 n$; second-column

Note :
Initial values of register bits are represented as follows :
" 1 " : Initial value " 1 "
" 0 " : Initial value "0"
" X " : Initial value "undefined"
"-" : No physical register present at this location
Access by any undescribed data access attribute is prohibited.

MB91245/S Series

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
00000000н	$\begin{gathered} \hline \text { PDR0 [R/W] B, H } \\ \text { XXXXXXXX } \end{gathered}$	PDR1 [R/W] B, H XXXXXXXX	$\begin{gathered} \hline \text { PDR2 [R/W] B, H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PDR3 [R/W] B, H } \\ \text { XXXX0000 } \end{gathered}$	Port Data Register
00000004н	PDR4 [R/W] B, H XXXXXXXX	PDR5 [R/W] B, H XXXXXXXX	PDR6 [R/W] B, H XXXXXXXX	$\begin{gathered} \text { PDR7 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ ---\mathrm{XXXX} \end{gathered}$	
00000008н	PDR8 [R/W] B, H XXXXXXXX	PDR9 [R/W] B, H XXXXXXXX	PDRA [R/W] B, H ----XXXX	PDRB [R/W] B, H XXXXXXXX	
0000000Сн	$\begin{gathered} \hline \text { PDRC }\left[\begin{array}{c} \text { [R/W] B, } \\ --\mathrm{XXXX} \end{array}\right. \\ \hline \end{gathered}$	PDRD [R/W] B, H 0000XXXX	PDRE [R/W] B, H XXXXXXXX	PDRF [R/W] B, H XXXXXXXX	
00000010н	PDRG $\underset{X X X X}{[R / W] ~ B, ~ H}$ ----XXXX	-			
$\begin{aligned} & 00000014 \mathrm{H} \\ & \text { to } \\ & 0000003 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				Reserved
00000040н	EIRRO [R/W] B, H, W 00000000	ENIRO [R/W] B, H, W	ELVRO [R/W] B, H, W0000000000000000		External Interrupt Control (INT0 to INT7)
00000044н	$\begin{gathered} \text { DICR [R/W] B, H, W } \\ ----0 \end{gathered}$	$\begin{gathered} \text { HRCL }[\mathrm{R} / \mathrm{W}] \mathrm{B} \\ 0--11111 \end{gathered}$			Delay Interrupt Module
00000048н	TMRLRO [W] H, W XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TMRO }[R] H, W \\ X X X X X X X X X X X X \end{gathered}$		Reload Timer 0
0000004Сн	-	00001000	TMCSR0 [R/W] B, H, W ----0000 00000000		
00000050н	TMRLR1 [W] H, W XXXXXXXX XXXXXXXX		TMR1 [R] H, W XXXXXXXX XXXXXXXX		Reload Timer 1
00000054н			$\begin{array}{r} \hline \text { TMCSR1 [R } \\ \text {----0000 } \end{array}$	$\begin{aligned} & \text { z/W] B, H, W } \\ & 00000000 \end{aligned}$	
00000058н	TMRLR2 [W] H, W XXXXXXXX XXXXXXXX		TMR2 [R] H, W XXXXXXXX XXXXXXXX		Reload Timer 2
0000005Сн	-		TMCSR2 [R/W] B, H, W ----0000 00000000		
00000060н	SSR [R/W] B, H, W 00001000	SIDR [R/W] B, H, W XXXXXXXX	$\begin{gathered} \hline \text { SCR }[R / W] B, H, W \\ 00000100 \end{gathered}$	SMR [R/W] B, H, W 00--0-0-	UART0
00000064н	UTIM [R] H (UTIMR [W] H) 0000000000000000		$\mathrm{DRCL}[\mathrm{~W}] \mathrm{B}$	UTIMC [R/W] B 0--00001	U-TIMER0
$\begin{aligned} & 00000068 \mathrm{H} \\ & \text { to } \\ & 0000008 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				Reserved
00000090н	-	$\begin{gathered} \text { SGDBL [R/W] B } \\ ------0 \end{gathered}$	$\begin{gathered} \text { SGCR [R/W] B, H, W } \\ 0----00000--000 \end{gathered}$		Sound Generator
00000094н	SGAR [R/W] B, H, W 00000000	$\begin{gathered} \text { SGFR [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { SGTR [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { SGDR [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	

(Continued)

MB91245/S Series

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
00000098н	LCDCMR [R/W] B, H, W ----0000	-	$\begin{gathered} \text { LCRO [R/W] } \\ \text { B, H, W } \\ 00010000 \end{gathered}$	$\begin{gathered} \text { LCR1 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$	LCD Controller Driver
0000009С ${ }_{\text {H }}$	$\begin{gathered} \hline \text { VRAMO }[R / W] \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM1 [R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM2 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { VRAM3 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
000000АОн	$\begin{aligned} & \text { VRAM4 [R/W] } \\ & \text { B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \hline \text { VRAM5 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { VRAM6 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { VRAM7 [R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000000A4	$\begin{gathered} \text { VRAM8 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM9 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM10 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM11 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
000000А8н	$\begin{gathered} \text { VRAM12 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM13 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM14 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { VRAM15 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
$\begin{aligned} & \text { 000000А8н } \\ & \text { to } \\ & 000000 \mathrm{AF} \end{aligned}$					Reserved
000000B0н	SCR3 [R/W] B, H, W 00000000	SMR3 [R/W] B, H, W 00000000	SSR3 [R/W] B, H, W 00001000	RDR3/TDR3 [R/W] B, H, W \qquad	LIN-UART0
000000B4 ${ }^{\text {H }}$	$\begin{gathered} \text { ESCR3 [R/W] } \\ \text { B, H, W } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \text { ECCR3 [R/W] } \\ \text { B, H, W } \\ 000000 \mathrm{XX} \end{gathered}$	$\begin{gathered} \text { BGR13 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { BGR03 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
000000B8н	$\begin{gathered} \text { SCR4 }[R / W] B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SMR4 }[R / W] B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SSR4 }[R / W] B, H, W \\ 00001000 \end{gathered}$	RDR4/TDR4 [R/W] B, H, W \qquad	LIN-UART1
$000000 \mathrm{BC}_{\mathrm{H}}$	$\begin{gathered} \text { ESCR4 [R/W] } \\ \text { B, H, W } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \text { ECCR4 [R/W] } \\ \text { B, H, W } \\ 000000 \mathrm{XX} \end{gathered}$	$\begin{gathered} \text { BGR14 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { BGR04 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
000000С0н	SCR5 [R/W] B, H, W 00000000	SMR5 [R/W] B, H, W 00000000 00000000	$\begin{gathered} \text { SSR5 [R/W] B, H, W } \\ 00001000 \end{gathered}$	RDR5/TDR5 [R/W] B, H, W \qquad	LIN-UART2
000000С4 ${ }^{\text {H }}$	$\begin{gathered} \text { ESCR5 [R/W] } \\ \text { B, H, W } \\ \text { 00000X00 } \end{gathered}$	$\begin{gathered} \text { ECCR5 [R/W] } \\ \text { B, H, W } \\ 000000 X X \end{gathered}$	$\begin{gathered} \text { BGR15 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { BGR05 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
$\begin{array}{\|l} 000000 \mathrm{CBH} \\ \text { to } \\ 000000 \mathrm{DOH} \end{array}$	-				Reserved
000000D4 ${ }^{\text {H }}$	TCDTO [R/W] H, W 0000000000000000		-	$\begin{gathered} \hline \text { TCCSO }[\mathrm{R} / \mathrm{W}] \\ \text { B, H, W } \\ 00000000 \end{gathered}$	16-bit Free Run Timer0
000000D8н	TCDT1 [R/W] H, W 0000000000000000		-	$\begin{gathered} \text { TCCS1 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$	16-bit Free Run Timer1

(Continued)

MB91245/S Series

(Continued)

MB91245/S Series

Address	Register				Block
	+ 0	+ 1	+ 2	+ 3	
00000158н	ADCT1 [R/W] B, H, W 00010000	$\begin{gathered} \hline \text { ADCTO }[R / W] \\ \text { B, H,W } \\ 00101100 \end{gathered}$	$\begin{gathered} \hline \text { ADSCH [R/W] } \\ \text { B, H, W } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { ADECH }[\mathrm{R} / \mathrm{W}] \\ \text { B, H, W } \\ ---00000 \end{gathered}$	A/D Converter
0000015CH	CUCR [R/W] B, H, W		CUTD [R/W] B, H, W 1000000000000000		Clock Caliblator
00000160н	CUTR1 [R] B, H, W\qquad 00000000		CUTR2 [R] B, H, W 0000000000000000		
00000164н	$\begin{gathered} \hline \text { PWC20 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PWC10 [R/W] } \\ B, H, W \\ X X X X X X X X \end{gathered}$	-	Reserved	Stepping Motor Controller
00000168H	-	PWCO [R/W] B -0000--0	$\begin{gathered} \hline \text { PWS20 [R/W] } \\ \text { B, H, W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS10 [R/W] } \\ \text { B, H, W } \\ --000000 \end{gathered}$	
0000016CH	$\begin{gathered} \text { PWC21 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PWC11[R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$			
00000170н	-	PWC1 [R/W] B -0000--0	$\begin{gathered} \text { PWS21 [R/W] } \\ \text { B, H, W } \\ -0000000 \end{gathered}$	$\begin{gathered} \text { PWS11 [R/W] } \\ \text { B, H, W } \\ --000000 \end{gathered}$	
00000174H	$\begin{gathered} \text { PWC22 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PWC12 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$			
00000178н	-	PWC2 [R/W] B -0000--0	$\begin{gathered} \hline \text { PWS22 [R/W] } \\ \text { B, H, W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS12 [R/W] } \\ \text { B, H, W } \\ --000000 \end{gathered}$	
0000017Сн	$\begin{gathered} \hline \text { PWC23 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PWC13 [R/W] } \\ B, H, W \\ X X X X X X X X \end{gathered}$			
00000180н	-	PWC3 [R/W] B $-0000--0$	$\begin{gathered} \hline \text { PWS23 [R/W] } \\ \text { B, H, W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS13 [R/W] } \\ \text { B, H, W } \\ --000000 \end{gathered}$	
00000184 ${ }^{\text {H }}$	$\begin{gathered} \text { PWC24 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PWC14 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$			
00000188н	-	PWC4 [R/W] B -0000--0	$\begin{gathered} \text { PWS24 [R/W] } \\ \text { B, H, W } \\ -0000000 \end{gathered}$	$\begin{gathered} \text { PWS14 [R/W] } \\ \text { B, H, W } \\ --000000 \end{gathered}$	
0000018CH	$\begin{gathered} \hline \text { PWC25 [R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PWC15 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	-		
00000190н	-	PWC5 [R/W] B -0000--0	$\begin{gathered} \hline \text { PWS25 [R/W] } \\ \text { B, H, W } \\ -0000000 \end{gathered}$	$\begin{gathered} \hline \text { PWS15 [R/W] } \\ \text { B, H, W } \\ --000000 \end{gathered}$	

(Continued)

MB91245/S Series

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{array}{\|l} \hline 00000194 \mathrm{H} \\ \text { to } \\ 000001 \mathrm{~A} 4 \mathrm{H} \end{array}$	-				Reserved
000001A8н	CANPRE [R/W] B, H, W 00000000	Reserved	-		CAN Prescaler
000001ACH	-				Reserved
000001B0н	-	$\begin{gathered} \text { TRG [R/W] B, H, W } \\ 00000000 \end{gathered}$	-	$\begin{gathered} \text { REVC [R/W] B, H, W } \\ 00000000 \end{gathered}$	PPG0
000001B4н	$\begin{gathered} \text { PRLHO [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLLO [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH1 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL1 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$	
000001B8н	$\begin{gathered} \text { PRLH2 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL2 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH3 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL3 [R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	
000001BCH	$\begin{gathered} \text { PPGCO [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC1 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC2 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC3 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	
000001С0н	$\begin{gathered} \text { PRLH4 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PRLL4 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PRLH5 [R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL5 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	
000001C4 ${ }_{\text {H }}$	$\begin{gathered} \text { PRLH6 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL6 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH7 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL7 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	PPG0
000001C8н	$\begin{gathered} \text { PPGC4 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC5 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC6 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC7 [R/W] } \\ \text { B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	
$\begin{aligned} & 000001 \mathrm{CCH} \\ & \text { to } \\ & 000001 \mathrm{FC}_{\mathrm{H}} \end{aligned}$					Reserved
00000200н	DMACAO [R/W] B, H, W *1000000000 0000XXXX XXXXXXXX XXXXXXXX				DMAC
00000204H	DMACBO [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				
00000208H	DMACA1 [R/W] B, H, W *100000000 0000XXXX XXXXXXXX XXXXXXXX				
0000020 ${ }_{\text {H }}$	DMACB1 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				
00000210н	DMACA2 [R/W] B, H, W *1 00000000 0000XXXX XXXXXXXX XXXXXXXX				
00000214H	DMACB2 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX				

(Continued)

(Continued)

MB91245/S Series

(Continued)

MB91245/S Series

Address	Register				Block
	+ 0	+ 1	+ 2	+ 3	
0000048CH	-				Clock Control Unit
00000490н	$\begin{gathered} \hline \text { OSCR [R/W] B } \\ 000-001 \end{gathered}$		-		
$\begin{gathered} \hline 00000494 \text { н } \\ \text { to } \\ 00004 \mathrm{~F} 8 \mathrm{H} \end{gathered}$	-				Reserved
000004FCH	PSCR [W] B XXXXXXXX	-			Port InputLevel Select Register
$\begin{array}{\|c\|} \hline 00000500 \text { н } \\ \text { to } \\ 0000053 \mathrm{C}_{\mathrm{H}} \end{array}$	-				Reserved
00000540н	PILRO $[R / W]$ B, H, W 00000000	$\begin{gathered} \text { PILR1 [R/W] B, H, W } \\ 00000000 \end{gathered}$	-		Port InputLevel Select Register
00000544	-	$\begin{gathered} \text { PILR5 [R/W] B, H, W } \\ 0------ \end{gathered}$			
00000548 to 00000550н	-				
00000554н to 00000578н	-				Reserved
0000057С	Reserved	$\begin{gathered} \text { LVRC [R/W] B, H, W } \\ 00011000 \end{gathered}$	Reserved	Reserved	CPU Detection of operation
$\begin{array}{\|c} \hline 00000580 н \\ \text { to } \\ 000005 \text { COH }_{H} \end{array}$	-				Reserved
00000600н		-	$\begin{gathered} \text { EPFR2 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR3 }[\mathrm{R} / \mathrm{W}] \\ \text { B, H, W } \\ 00000000 \end{gathered}$	Extended Port Function Register
00000604	$\begin{gathered} \text { EPFR4 }[\mathrm{R} / \mathrm{W}] \\ \text { B, H, W } \\ 00000000 \end{gathered}$	EPFR5 [R/W] B, H, W 00000000			
00000608H	-				
0000060Сн	-	$\begin{gathered} \text { EPFRD [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$			Extended Port Function Register
00000610н	$\begin{gathered} \text { EPFRG [R/W] } \\ \text { B, H, W } \\ ---0000 \end{gathered}$	-			
$\begin{gathered} 00000614 \mathrm{H} \\ \text { to } \\ 000063 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				Reserved

(Continued)

MB91245/S Series

(Continued)

Address	Register				Block
	+ 0	+1	$+2$	+ 3	
0000101 CH	DMADA3 [R/W] WXXXXXXXX $X X X X X X X X ~ X X X X X X X X ~$DXXXXXXX				DMAC
00001020	$\begin{gathered} \text { DMASA4 [R/W] W } \\ \text { XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX } \end{gathered}$				
00001024н	DMADA4 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{aligned} & \hline 00001028 \mathrm{H} \\ & \text { to } \\ & 00006 \text { FFCH } \end{aligned}$	-				Reserved
00007000н	$\begin{gathered} \text { FLCR [R/W] } \\ 01 \mathrm{XX1000} \end{gathered}$	-			Flash I/F (Only Mass Production Product)
00007004H	$\begin{gathered} \text { FLWC [R/W] } \\ 00000011 \end{gathered}$	-			
$\begin{aligned} & \text { 00007008н } \\ & \text { to } \\ & 0000 F F F C_{H} \end{aligned}$	-				Reserved
00020000н	CTRLR0		STATR0		CANO
00020004н	ERRCNT0		BTR0		
00020008н	INTR0		TESTR0		
0002000С ${ }_{\text {н }}$	BRPER0		-		
00020010н	IF1CREQ0		IF1CMSK0		
00020014 ${ }_{\text {H }}$	IF1MSK20		IF1MSK10		
00020018H	IF1ARB20		IF1ARB10		
0002001䄯	IF1MCTR0		-		
00020020н	IF1DTA10		IF1DTA20		
00020024н	IF1DTB10		IF1DTB20		
$\begin{aligned} & \text { 00020028н, } \\ & 0002002 \mathrm{CH} \end{aligned}$					
00020030н		1 data	dian		
00020034н		data	dian		
$\begin{aligned} & \text { 00020038H, } \\ & 0002003 \mathrm{CH} \end{aligned}$					
00020040н					
00020044 ${ }_{\text {H }}$					
00020048н					
0002004С ${ }_{\text {H }}$					
00020050н					
00020054 ${ }^{\text {H }}$	IF2DTB10		IF2DTB20		

(Continued)

MB91245/S Series

MB91245/S Series

(Continued)

Address	Register				Block
	+ 0	+1	+2	+ 3	
00020140н	IF2CREQ1		IF2CMSK1		CAN1
00020144н	IF2MSK21		IF2MSK11		
00020148н	IF2ARB21		IF2ARB11		
0002014CH	IF2MCTR1		-		
00020150н	IF2DTA11		IF2DTA21		
00020154н	IF2DTB11		IF2DTB21		
$\begin{aligned} & 00020158 \mathrm{H}, \\ & 0002015 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				
00020160н	Reserved (IF2 data A mirror, little endian byte ordering)				
00020164н	Reserved (IF2 data B mirror, little endian byte ordering)				
$\begin{aligned} & 00020168 \mathrm{H}, \\ & 0002017 \mathrm{CH} \end{aligned}$	-				
00020180н	TREQR21		TREQR11		
00020184н	Reserved (> 32..128 Message buffer)				
$\begin{aligned} & 00020188 \mathrm{H}, \\ & 0002018 \mathrm{CH}_{\mathrm{H}} \end{aligned}$	-				
00020190н	NEWDT21		NEWDT11		
00020194н	Reserved ($>32 . .128$ Message buffer)				
$\begin{aligned} & \text { 00020198н, } \\ & 0002019 \mathrm{CH}_{\mathrm{H}} \end{aligned}$	-				
000201AOH	INTPND21		INTPND11		
000201A4н	Reserved (> 32..128 Message buffer)				
$\begin{aligned} & 000201 \mathrm{~A} 8 \mathrm{H}, \\ & 000201 \mathrm{ACH} \end{aligned}$	-				
000201B0н	MESVAL21		MESVAL11		
000201B4 ${ }^{\text {¢ }}$	Reserved ($>32 . .128$ Message buffer)				
$\begin{aligned} & \text { 000201B8н, } \\ & \text { 000201FCH } \end{aligned}$	-				
$\begin{array}{\|c\|} \hline 00038000 н \\ \text { to } \\ \text { 003FFFFC } \end{array}$	-				F-bus RAM 32 Kbytes
	-				F-bus RAM 16 Kbytes
$\begin{gathered} \text { O003EOOOH } \\ \text { to } \\ \text { 003FFFFC } \end{gathered}$	-				F-bus RAM 8 Kbytes

[^2]*2 : This register is set by a mode vector fetch and cannot be accessed by the user.

MB91245/S Series

Address	Register				Block
	+ 0	+1	+2	+ 3	
$\begin{aligned} & 000 \mathrm{CO} 000_{\mathrm{H}} \\ & \text { to } \\ & 000 \mathrm{FFFFC} \end{aligned}$		-			User ROM 256 Kbytes (Only Mass Production Product)

Address	Register				Block
	$+\mathbf{0}$	$\mathbf{+ 1}$	$+\mathbf{2}$	$\mathbf{+ 3}$	
OOOEOOOOH to OOOFFFFCH	User ROM 128 Kbytes (MB91247)				

MB91245/S Series

VECTOR TABLE

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA start source
	Decimal	Hexadecimal				
Reset	0	00	-	3FCH	000FFFFFCH	-
Mode vector	1	01	-	3F8H	000FFFF8н	-
System reserved	2	02	-	3F4н	000FFFFF4н	-
System reserved	3	03	-	3FOH	000FFFFF0н	-
System reserved	4	04	-	3ECH	000FFFECH	-
System reserved	5	05	-	3E8H	000FFFE8	-
System reserved	6	06	-	3E4н	000FFFFE4 ${ }_{\text {¢ }}$	-
Coprocessor absent trap	7	07	-	3E0н	000FFFEOH	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	3D8н	000FFFD8н	-
System reserved	10	OA	-	3D4н	000FFFD4 ${ }_{\text {н }}$	-
System reserved	11	OB	-	3D0н	000FFFDD ${ }_{\text {н }}$	-
Step trace trap	12	OC	-	3ССН	000FFFCCH	-
NMI request (ICE)	13	OD	-	3С8н	000FFFC8 ${ }_{\text {н }}$	-
Undefined instruction exception	14	OE	-	3С4 ${ }_{\text {H }}$	000FFFFC4 ${ }_{\text {н }}$	-
NMI instruction	15	OF	$15(\mathrm{FH})$ Fixed	3 COH	000FFFFCOH	-
External interrupt 0	16	10	ICR00	ЗВСн	000FFFBC ${ }_{\text {н }}$	6
External interrupt 1	17	11	ICR01	3B8H	000FFFFB8	7
External interrupt 2	18	12	ICR02	3В4н	000FFFFB4	-
External interrupt 3	19	13	ICR03	3B0H	000FFFB0н	-
External interrupt 4	20	14	ICR04	ЗАСН	000FFFACH	-
External interrupt 5	21	15	ICR05	3A8H	000FFFA8н	-
External interrupt 6	22	16	ICR06	3А4н	000FFFA4 ${ }_{\text {¢ }}$	-
External interrupt 7	23	17	ICR07	3 AOH	000FFFAOH	-
Reload timer 0 (Underflow)	24	18	ICR08	39CH	000FFF9CH	-
Reload timer 1 (Underflow)	25	19	ICR09	398н	000FFF98	9
Reload timer 2 (Underflow)	26	1A	ICR10	394н	000FFFF94н	10
UART0 (Reception completed/error)	27	1B	ICR11	390H	000FFF90н	0
UART0 (Transmission completed)	28	1 C	ICR12	$38 \mathrm{CH}_{\mathrm{H}}$	000FFF8CH	3
LIN-UARTO (Reception completed/ error, LIN Sync break, bus idle)	29	1D	ICR13	388н	000FFF88 ${ }^{\text {H }}$	1

(Continued)

MB91245/S Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA start source
	Decimal	Hexadecimal				
LIN-UART0 (Transmission completed)	30	1E	ICR14	384	000FFF84н	4
LIN-UART1 (Reception completed/ error, LIN Sync break, bus idle)	31	1F	ICR15	380	000FFF80н	2
LIN-UART1 (Transmission completed)	32	20	ICR16	37Сн	000FFF7Cн	5
LIN-UART2 (Reception completed/ error, LIN Sync break, bus idle)	33	21	ICR17	378	000FFF78н	-
LIN-UART2 (Transmission completed)	34	22	ICR18	374H	000FFF744	-
CANO Reception/Transmission completed Node status transition	35	23	ICR19	370н	000FFF70н	-
CAN1 Reception/Transmission completed Node status transition	36	24	ICR20	36Сн	000FFF6CH	-
System reserved	37	25	ICR21	368H	000FFF68 ${ }_{\text {H }}$	-
System reserved	38	26	ICR22	364 ${ }_{\text {H }}$	000FFF64н	-
System reserved	39	27	ICR23	360н	000FFF60н	-
PWC (Measurement completed)	40	28	ICR24	$35 \mathrm{CH}_{\mathrm{H}}$	000FFF5CH	-
PWC (Overflow)	41	29	ICR25	358H	000FFF58н	-
DMAC transfer completed/error	42	2 A	ICR26	354 ${ }_{\text {H }}$	000FFF544	-
A/D converter	43	2B	ICR27	350н	000FFF50н	14
Real-time clock Hour/minute/second overflow, corrected	44	2C	ICR28	34Сн	000FFF4CH	-
System reserved	45	2D	ICR29	348н	000FFF484	-
Main oscillation stabilization wait timer	46	2 E	ICR30	344H	000FFF44	-
Timebase timer overflow	47	2 F	ICR31	340 ${ }^{\text {H}}$	000FFFF40	-
PPG0/1 underflow	48	30	ICR32	33 CH	000FFF3Cн	-
PPG2/3 underflow	49	31	ICR33	338 ${ }^{\text {¢ }}$	000FFF38н	-
PPG4/5 underflow	50	32	ICR34	334 ${ }_{\text {H }}$	000FFFF34	-
PPG6/7 underflow	51	33	ICR35	330н	000FFF30н	-
16-bit free-run timer 0 Overflow \& OCU0 Compare match clear	52	34	ICR36	32CH	000FFF2CH	-

(Continued)

MB91245/S Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR defaultaddress	$\begin{gathered} \text { DMA } \\ \text { start } \\ \text { source } \end{gathered}$
	Decimal	Hexadecimal				
16-bit free-run timer 1 Overflow	53	35	ICR37	328н	000FFF28H	-
ICU0 (Capture)	54	36	ICR38	324	000FFF24н	-
ICU1 (Capture)	55	37	ICR39	320н	000FFF20н	-
ICU2 (Capture)	56	38	ICR40	31 CH	000FFFF1C ${ }_{\text {н }}$	-
ICU3 (Capture)	57	39	ICR41	318	000FFF18н	-
OCU0 (Match)	58	3A	ICR42	314H	000FFF14н	-
OCU1 (Match)	59	3B	ICR43	310 н	000FFF10н	-
System reserved	60	3C	ICR44	30 CH	000FFFOCH	-
System reserved	61	3D	ICR45	308н	000FFF08H	-
Sound generator setup count completed	62	3E	ICR46	304H	000FFF04н	-
Delay interrupt source bit	63	3F	ICR47	300 н	000FFF00н	-
System reserved (Used by REALOS)	64	40	-	2 FCH	000FFEFCC	-
System reserved (Used by REALOS)	65	41	-	2F8H	000FFEF8\%	-
System reserved	$\begin{aligned} & \hline 66 \\ & \text { to } \\ & 79 \end{aligned}$	$\begin{aligned} & 42 \\ & \text { to } \\ & 4 \mathrm{~F} \end{aligned}$	-	$\begin{gathered} 2 \mathrm{~F} 4 \mathrm{H} \\ \text { to } \\ 2 \mathrm{COH} \end{gathered}$	000FFEF4н to 000FFECO	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{array}{r} 50 \\ \text { to } \\ \text { FF } \end{array}$	-	$\begin{gathered} 2 \mathrm{BCH} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	000FFEBC to 000FFCOOH	-

MB91245/S Series

TABLE OF PIN STATUS IN EACH MODE

- Single chip mode

Pin name	Function name	Initial value		In sleep state	In stop state	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ " ${ }^{\text {" }}$		HIZ $=0$	HIZ $=1$
$\overline{\text { INIT }}$	$\overline{\text { INIT }}$	Input enabled				
X0	X0				$\mathrm{Hi}-\mathrm{Z}$ or input enabled	Hi-Z or input enabled
X1	X1				"H" output or input enabled	"H" output or input enabled
XOA	XOA				$\mathrm{Hi}-\mathrm{Z}$ or input enabled	Hi-Z or input enabled
X1A	X1A				"H" output or input enabled	"H" output or input enabled
MOD0	MODO				Input enabled	Input enabled
MOD1	MOD1					
MOD2	MOD2					
P00	P00/SEG24/INT0/D00	Output Hi-Z input enabled	Output Hi-Z input enabled	P : Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F : Operation or output held during LCDC output; INTO to INT5 input enabled when PFRO register is set to " 0 "	Operation or output held during LCDC output, otherwise output Hi-Z / INT0 to INT5 input enabled when PFRO register is set to "0"
P01	P01/SEG25/INT1/D01					
P02	P02/SEG26/INT2/D02					
P03	P03/SEG27/INT3/D03					
P04	P04/SEG28/INT4/D04					
P05	P05/SEG29/INT5/D05					
P06	P06/SEG30/D06					
P07	P07/SEG31//̄TG/D07					
$\begin{gathered} \text { P10 } \\ \text { to } \\ \text { P17 } \end{gathered}$	P10 to P17/ SEG16 to SEG23/ D08 to D15				P: Immediately preceding	Operation or output held
$\begin{gathered} \hline \text { P20 } \\ \text { to } \\ \text { P27 } \\ \hline \end{gathered}$	P20 to P27/ SEG00 to SEG07/ A00 to A07				status held F: Operation or output held	during LCDC output; Otherwise
$\begin{gathered} \text { P30 } \\ \text { to } \\ \text { P33 } \\ \hline \end{gathered}$	P30 to P33/ SEG08 to SEG11/ A08 to A11	L' outp	L out		during LCDC output; Otherwise	Input fixed to " 0 "
$\begin{gathered} \text { P34 } \\ \text { to } \\ \text { P37 } \end{gathered}$	P34 to P37/ SEG12 to SEG15/ A12 to A15	Output Hi-Z input enabled	Output Hi-Z input enabled			

(Continued)

MB91245/S Series

Pin name	Function name	Initial value		In sleep state	In stop state	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ "H"		HIZ $=0$	$H I Z=1$
P40	P40/SIN0	Output Hi-Z input enabled	Output Hi-Z input enabled	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Outputheld or Hi-Z	Output Hi-Z / Input fixed to " 0 "
P41	P41/SOT0					
P42	P42/SCK0					
P43	P43/SIN3					
P44	P44/SOT3					
P45	P45/SCK3					
P46	P46/SGA/ $\overline{\text { AS }}$					
P47	P47/SGO/SYSCLK					
P50	P50/SIN4/CK0/CSO					
P51	P51/SOT4/CS1					
P52	P52/SCK4/CS2					
P53	P53/SIN5/CK1/CS3					
P54	P54/SOT5/RD					
P55	P55/SCK5/WR0					
P56	P56/OUT0/WR1					
P57	P57/OUT1/RDY					
$\begin{gathered} \hline \text { P60 } \\ \text { to } \\ \text { P67 } \end{gathered}$	P60 to P67/AN0 to AN7					
P70	P70/RX0/INT6				P: Immediately preceding status held F: Output held, INT6 input enabled	Output Hi-Z / INT6 input enabled when PFR7 register is set to "1"
P71	P71/TX0				P: Immediately preceding status held, F: Hi-Z	Output Hi-Z / Input fixed to " 0 "
P72	P72/RX1/INT7				P: Immediately preceding status held F: Output held, INT7 input enabled	Output Hi-Z / INT7 input enabled when PFR7 register is set to " 1 "

(Continued)

MB91245/S Series

(Continued)

	Function name	Initial value		In sleep state	In stop state	
		$\overline{\text { INIT }}=$ " L "	$\overline{\text { INIT }}=$ " H "		$\mathrm{HIZ}=0$	$\mathrm{HIZ}=1$
P73	P73/TX0	Output Hi-Z input enabled	Output Hi-Z input enabled	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Outputheld or Hi-Z	Output Hi-Z / Input fixed to " 0 "
$\begin{gathered} \text { P80 } \\ \text { to } \\ \text { P87 } \end{gathered}$	P80 to P87/AN16 to AN23					
$\begin{gathered} \hline \text { P90 } \\ \text { to } \\ \text { P97 } \end{gathered}$	P90 to P97/AN24 to AN31					
$\begin{gathered} \text { PAO } \\ \text { to } \\ \text { PA3 } \end{gathered}$	PA0 to PA3/ PWMxxx to PWMxxx					
$\begin{gathered} \text { PB0 } \\ \text { to } \\ \text { PB7 } \end{gathered}$	PB0 to PB7/ PWMxxx to PWMxxx					
$\begin{gathered} \text { PC0 } \\ \text { to } \\ \text { PC3 } \end{gathered}$	PC0 to PC3/ PWMxxx to PWMxxx					
PD0	PDO/TINO/INO/PWC0	Input enabled	Input enabled	Input enabled	Hi-Z	Input fixed to " 0 "
PD1	PD1/TIN1/IN1					
PD2	PD2/TIN2/IN2					
PD3	PD3/IN3					
PD4	PD4/COM0/PPG1	"L" output	"L" output	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held LCDC : Output or hold PPG: Output held	
PD5	PD5/COM1/PPG3					
PD6	PD6/COM2/PPG5					
PD7	PD7/COM3/PPG7					
$\begin{gathered} \text { PE0 } \\ \text { to } \\ \text { PE7 } \end{gathered}$	PE0 to PE7/ PWMxxx to PWMxxx	Output Hi-Z Input enabled	Output Hi-Z Input enabled		P: Immediately preceding status held F: Outputheld or Hi-Z	Output Hi-Z / Input fixed to " 0 "
$\begin{gathered} \text { PF0 } \\ \text { to } \\ \text { PF7 } \end{gathered}$	PF0 to PF7/AN8 to AN15					
PG0	PG0/ (WOT) /PPG0					
PG1	PG1/TOT0/PPG2					
PG2	PG2/TOT1/PPG4					
PG3	PG3/TOT2/PPG6					

MB91245/S Series

- External bus mode (8-bit)

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ " H "		HIZ $=0$	HIZ $=1$
$\overline{\text { INIT }}$	$\overline{\text { INIT }}$	Input enabled				
X0	X0				Hi -Z or input enabled	$\mathrm{Hi}-\mathrm{Z}$ or input enabled
X1	X1				"H" output or input enabled	"H" output or input enabled
XOA	X0A				Hi-Z or input enabled	Hi-Z or input enabled
X1A	X1A				"H" output or input enabled	"H" output or input enabled
MODO	MODO					
MOD1	MOD1				Input enabled	Input enabled
MOD2	MOD2					
P00	P00/SEG24/ INTO	Output Hi-Z input enabled	Output Hi-Z input enabled	P: Immediately preceding status held F: Normal operation performed	P : Immediately preceding status held F: Operation or output held during LCDC output; INT0 to INT5 input enabled when PFR0 register is set to "0"	Operation or output held during LCDC output, otherwise output Hi-Z/INTO to INT5 input enabled when PFRO register is set to " 0 "
P01	$\begin{aligned} & \text { P01/SEG25/ } \\ & \text { INT1 } \end{aligned}$					
P02	P02/SEG26/ INT2					
P03	$\begin{aligned} & \text { P03/SEG27/ } \\ & \text { INT3 } \end{aligned}$					
P04	P04/SEG28/ INT4					
P05	P05/SEG29/ INT5					
P06	P06/SEG30					
P07	$\underset{\text { ATG }}{\text { P07/SEG31/ }}$				Immediately preceding status held F: Operation or output held during LCDC output, otherwise $\mathrm{Hi}-\mathrm{Z}$	Operation or output held during LCDC output, otherwise output Hi-Z / Input fixed to "0"
$\begin{gathered} \mathrm{P} 10 \\ \text { to } \\ \text { P17 } \end{gathered}$	D08 to D15			Hi-Z	Hi-Z	Output Hi-Z / Input fixed to "0"
$\begin{gathered} \text { P20 } \\ \text { to } \\ \text { P27 } \end{gathered}$	A00 to A07	"L" output	"H" output	F : Address output	F : Address output	Output Hi-Z / Input fixed to "0"
$\begin{gathered} \text { P30 } \\ \text { to } \\ \text { P33 } \end{gathered}$	A08 to A11					

(Continued)

MB91245/S Series

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ " ${ }^{\text {" }}$		$\mathrm{HIZ}=0$	HIZ $=1$
$\begin{gathered} \text { P34 } \\ \text { to } \\ \text { P37 } \end{gathered}$	A12 to A15	Output $\mathrm{Hi}-\mathrm{Z}$ input enabled	"H" output	F : Address output	F : Address output	Output Hi-Z/ Input fixed to "0"
P40	P40/SINO		Output $\mathrm{Hi}-\mathrm{Z}$ input enabled	P: Immediately preceding status held F: Normal operation performed	P : Immediately preceding status held F: Output held or $\mathrm{Hi}-\mathrm{Z}$	
P41	P41/SOT0					
P42	P42/SCK0					
P43	P43/SIN3					
P44	P44/SOT3					
P45	P45/SCK3					
P46	$\frac{\mathrm{P} 46 / \mathrm{SGA} /}{\overline{\mathrm{AS}}}$		"H" output	P: Immediately preceding status held, AS : "H" output, F: Normal operation performed	P : Immediately preceding status held, $\overline{\mathrm{AS}}$: "H" output, F: Output held	
P47	P47/SGO/ SYSCLK	Output Hi-Z input enabled	CLK output	P: Immediately preceding status held, CLK : CLK output, F: Normal operation performed	P: Immediately preceding status held, CLK : "H" or "L" output, F: Output held	
P50	$\begin{aligned} & \hline \text { P50/SIN4/ } \\ & \text { CKO/CS0 } \end{aligned}$		"H" output	Bus control : "H" output P: Immediately preceding status held F: Normal operation performed	Bus control : "H" output P : Immediately preceding status held F: Output held or $\mathrm{Hi}-\mathrm{Z}$	
P51	$\frac{\mathrm{P} 51 / \mathrm{SOT} 4 /}{\mathrm{CS} 1}$					
P52	$\frac{\mathrm{P} 52 / \mathrm{SCK} 4 /}{\mathrm{CS} 2}$					
P53	$\begin{aligned} & \text { P53/SIN5/ } \\ & \text { CK1/CS3 } \end{aligned}$					
P54	$\begin{gathered} \hline \frac{\mathrm{P} 54 / \mathrm{SOT}}{\mathrm{RD}} \end{gathered}$					
P55	$\frac{\text { P55/SCK5/ }}{\text { WR0 }}$					

(Continued)

MB91245/S Series

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}$ = "H"		$\mathrm{HIZ}=0$	$\mathrm{HIZ}=1$
P56	P56/OUT0	Output Hi-Z input enabled	"H" output	P : Immediately preceding status held F: Normal operation performed; "H" output when EPFR is set to "0"	P : Immediately preceding status held F: Output held; "H" output when EPFR is set to "0"	Output Hi-Z/ Input fixed to "0"
P57	P57/OUT1/ RDY		RDY input	P : Immediately preceding status held F: Normal status, RDY input	P: Immediately preceding status held F: Output held, RDY input	
$\begin{gathered} \text { P60 } \\ \text { to } \\ \text { P67 } \end{gathered}$	P60 to P77/ ANO to AN7	OutputHi-Z input enabled	OutputHi-Z input enabled	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Output held or Hi-Z	Output Hi-Z / Input fixed to "0"
P70	$\begin{aligned} & \text { P70/RX0/ } \\ & \text { INT6 } \end{aligned}$				P : Immediately preceding status held F: Output held, INT6 input enabled	Output Hi-Z / INT6 input enabled when PFR7 register is set to " 1 "
P71	P71/TX0				P: Immediately preceding status held, F: Hi-Z	Output Hi-Z / Input fixed to "0"
P72	$\begin{aligned} & \text { P72/RX1/ } \\ & \text { INT7 } \end{aligned}$				P : Immediately preceding status held F: Output held, INT7 input enabled	Output Hi-Z/ INT7 input enabled when PFR7 register is set to " 1 "

(Continued)

MB91245/S Series

(Continued)

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ " H "		HIZ $=0$	$\mathrm{HIZ}=1$
$\begin{gathered} \hline \text { P80 } \\ \text { to } \\ \text { P87 } \end{gathered}$	P80 to P87/ AN16 to AN23	$\begin{aligned} & \text { Output Hi-Z } \\ & \text { input } \\ & \text { enabled } \end{aligned}$	$\begin{aligned} & \text { Output Hi-Z } \\ & \text { input } \\ & \text { enabled } \end{aligned}$	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Normal operation performed	Output Hi-Z/Input fixed to "0"
$\begin{gathered} \hline \text { P90 } \\ \text { to } \\ \text { P97 } \end{gathered}$	P90 to P97/ AN24 to AN31					
$\begin{gathered} \hline \text { PAO } \\ \text { to } \\ \text { PA3 } \end{gathered}$	PA0 to PA3/ PWMxxx to PWMxxx					
$\begin{gathered} \text { PB0 } \\ \text { to } \\ \text { PB7 } \end{gathered}$	PB0 to PB7/ PWMxxx to PWMxxx					
$\begin{gathered} \hline \mathrm{PC0} \\ \text { to } \\ \text { PC3 } \end{gathered}$	PC0 to PC3/ PWMxxx to PWMxxx					
PDO	PDO/TINO/ INO/PWCO	Input enabled	Input enabled	Input enabled	Hi-Z	Input fixed to "0"
PD1	PD1/TIN1					
PD2	PD2/TIN2					
PD3	PD3/IN3					
PD4	$\begin{aligned} & \hline \text { PD4/COMO/ } \\ & \text { PPG1 } \end{aligned}$	"L" output	"L" output	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held LCDC : Output or hold PPG: Output held	
PD5	$\begin{aligned} & \hline \text { PD5/COM1/ } \\ & \text { PPG3 } \end{aligned}$					
PD6	$\begin{aligned} & \text { PD6/COM2/ } \\ & \text { PPG5 } \\ & \hline \end{aligned}$					
PD7	$\begin{gathered} \hline \text { PD7/COM3/ } \\ \text { PPG7 } \end{gathered}$					
$\begin{aligned} & \text { PE0 } \\ & \text { to } \\ & \text { PE7 } \end{aligned}$	PE0 to PE7/ PWMxxx to PWMxxx	$\begin{aligned} & \text { Output Hi-Z } \\ & \text { Input } \\ & \text { enabled } \end{aligned}$	Output Hi-Z Input enabled		P: Immediately preceding status held F: Output held or Hi-Z	Output Hi-Z/Input fixed to "0"
$\begin{gathered} \text { PF0 } \\ \text { to } \\ \text { PF7 } \end{gathered}$	PF0 to PF7/ AN8 to AN15					
PGO	$\begin{gathered} \text { PGO/ (WOT) / } \\ \text { PPGO } \end{gathered}$					
PG1	$\begin{gathered} \hline \text { PG1/TOT0/ } \\ \text { PPG2 } \end{gathered}$					
PG2	$\begin{gathered} \text { PG2/TOT1/ } \\ \text { PPG4 } \end{gathered}$					
PG3	$\begin{gathered} \hline \text { PG3/TOT2/ } \\ \text { PPG6 } \end{gathered}$					

MB91245/S Series

- External bus mode (16-bit)

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ "H"		$\mathrm{HIZ}=0$	$\mathrm{HIZ}=1$
$\overline{\text { INIT }}$	$\overline{\text { INIT }}$	Input enabled				
X0	X0				$\mathrm{Hi}-\mathrm{Z}$ or input enabled	$\mathrm{Hi}-\mathrm{Z}$ or input enabled
X1	X1				"H" output or input enabled	"H" output or input enabled
XOA	XOA				Hi-Z or input enabled	Hi-Z or input enabled
X1A	X1A				"H" output or input enabled	"H" output or input enabled
MODO	MODO					
MOD1	MOD1				Input enabled	Input enabled
MOD2	MOD2					
P00	D00	Output Hi-Z input enabled	Output $\mathrm{Hi}-\mathrm{Z}$ input enabled	Hi-Z	Hi-Z	Output Hi-Z Input fixed to "0"
P01	D01					
P02	D02					
P03	D03					
P04	D04					
P05	D05					
P06	D06					
P07	D07					
$\begin{gathered} \text { P10 } \\ \text { to } \\ \text { P17 } \end{gathered}$	D08 to D15					
$\begin{gathered} \text { P20 } \\ \text { to } \\ \text { P27 } \end{gathered}$	A00 to A07	"L" output				
$\begin{gathered} \text { P30 } \\ \text { to } \\ \text { P33 } \end{gathered}$	A08 to A11	L oupur	"H" output	F : Address output	F : Address output	
$\begin{gathered} \text { P34 } \\ \text { to } \\ \text { P37 } \end{gathered}$	A12 to A15	Output $\mathrm{Hi}-\mathrm{Z}$ input enabled				
P40	P40/SINO		Output Hi-Z input enabled	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Output held or $\mathrm{Hi}-\mathrm{Z}$	
P41	P41/SOT0					
P42	P42/SCK0					
P43	P43/SIN3					
P44	P44/SOT3					
P45	P45/SCK3					

(Continued)

MB91245/S Series

	Function	Initial value		In sleep mode	In stop mode	
name		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ " ${ }^{\text {" }}$		HIZ $=0$	HIZ = 1
P46	P46/SGA/ $\overline{A S}$	Output Hi-Z input enabled	"H" output	P: Immediately preceding status held, $\overline{A S}$: "H" output, F: Normal operation performed	P : Immediately preceding status held, $\overline{\text { AS : "H" output, }}$ F: Output held	
P47	$\begin{aligned} & \text { P47/SGO/ } \\ & \text { SYSCLK } \end{aligned}$		CLK output	P : Immediately preceding status held, CLK : CLK output, F: Normal operation performed	P : Immediately preceding status held, CLK : "H" or "L" output, F: Output held	Output Hi-Z Input fixed to "0"
P50	$\begin{aligned} & \text { P50/SIN4/ } \\ & \text { CKO/CS0 } \end{aligned}$		"H" output	Bus control : " H " output P: Immediately preceding status held F: Normal operation performed	Bus control : "H" output P : Immediately preceding status held F: Output held or $\mathrm{Hi}-\mathrm{Z}$	
P51	$\frac{\mathrm{P} 51 / \mathrm{SOT} 4 /}{\mathrm{CS} 1}$					
P52	$\begin{gathered} \hline \text { P52/SCK4/ } \\ \hline \mathrm{CS} 2 \end{gathered}$					
P53	$\begin{aligned} & \hline \text { P53/SIN5/ } \\ & \text { CK1/CS3 } \end{aligned}$					
P54	$\begin{gathered} \hline \text { P54/SOT5/ } \\ \frac{\mathrm{RD}}{} \end{gathered}$	Output Hi-Z input enabled	"H" output	Bus control : "H" output P : Immediately preceding status held F: Normal operation performed	Bus control : "H" output P : Immediately preceding status held F: Output held or $\mathrm{Hi}-\mathrm{Z}$	Output Hi-Z / Input fixed to "0"
P55	$\begin{gathered} \text { P55/SCK5/ } \\ \text { WRO } \end{gathered}$					
P56	$\begin{gathered} \text { P56/OUT0/ } \\ \frac{\text { WR1 }}{} \end{gathered}$					
P57	$\underset{\text { RDY }}{\text { P57/OUT1/ }}$		RDY input	P: Immediately preceding status held F: Normal status, RDY input	P: Immediately preceding status held F: Output held, RDY input	
$\begin{gathered} \text { P60 } \\ \text { to } \\ \text { P67 } \end{gathered}$	P60 to P77/ ANO to AN7	Output Hi-Z input enabled	Output Hi-Z input enabled	P : Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Output held or Hi-Z	Output Hi-Z / Input fixed to "0"

(Continued)

MB91245/S Series

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}=$ " H "		HIZ $=0$	HIZ $=1$
P70	$\begin{aligned} & \text { P70/RX0/ } \\ & \text { INT6 } \end{aligned}$	OutputHi-Z input enabled	$\begin{aligned} & \text { OutputHi-Z } \\ & \text { input } \\ & \text { enabled } \end{aligned}$	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held F: Output held, INT6 input enabled	Output Hi-Z / INT6 input enabled when PFR7 register is set to " 1 "
P71	P71/TX0				P: Immediately preceding status held, F: Hi-Z	Output Hi-Z/ Input fixed to "0"
P72	$\begin{aligned} & \text { P72/RX1/ } \\ & \text { INT7 } \end{aligned}$				P : Immediately preceding status held F: Output held, INT7 input enabled	Output Hi-Z / INT7 input enabled when PFR7 register is set to " 1 "
$\begin{gathered} \text { P80 } \\ \text { to } \\ \text { P87 } \end{gathered}$	$\begin{gathered} \text { P80 to P87/ } \\ \text { AN16 to } \\ \text { AN23 } \end{gathered}$	$\begin{gathered} \text { OutputHi-Z } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{aligned} & \text { Output Hi-Z } \\ & \text { input } \\ & \text { enabled } \end{aligned}$	P: Immediately preceding status held F: Normal operation performed	P : Immediately preceding status held F: Normal operation performed	Output Hi-Z/ Input fixed to "0"
$\begin{gathered} \text { P90 } \\ \text { to } \\ \text { P97 } \end{gathered}$	$\begin{gathered} \text { P90 to P97/ } \\ \text { AN24 to } \\ \text { AN31 } \end{gathered}$					
$\begin{gathered} \text { PAO } \\ \text { to } \\ \text { PA3 } \end{gathered}$	PA0 to PA3/ PWMxxx to PWMxxx					
$\begin{gathered} \text { PB0 } \\ \text { to } \\ \text { PB7 } \end{gathered}$	PB0 to PB7/ PWMxxx to PWMxxx					
$\begin{gathered} \text { PC0 } \\ \text { to } \\ \text { PC3 } \end{gathered}$	PC0 to PC3/ PWMxxx to PWMxxx					
PDO	PDO/TIN0/ INO/PWCO	Input enabled	Input enabled	Input enabled	Hi-Z	Input fixed to "0"
PD1	PD1/TIN1					
PD2	PD2/TIN2					
PD3	PD3/IN3					

(Continued)

MB91245/S Series

(Continued)

Pin name	Function name	Initial value		In sleep mode	In stop mode	
		$\overline{\text { INIT }}=$ "L"	$\overline{\text { INIT }}$ = "H"		$\mathrm{HIZ}=0$	HIZ = 1
PD4	$\begin{gathered} \hline \text { PD4/COM0/ } \\ \text { PPG1 } \end{gathered}$	"L" output	"L" output	P: Immediately preceding status held F: Normal operation performed	P: Immediately preceding status held LCDC : Output or hold PPG: Output held	Input fixed to "0"
PD5	$\begin{aligned} & \hline \text { PD5/COM1/ } \\ & \text { PPG3 } \end{aligned}$					
PD6	$\begin{gathered} \hline \text { PD6/COM2/ } \\ \text { PPG5 } \end{gathered}$					
PD7	$\begin{gathered} \text { PD7/COM3/ } \\ \text { PPG7 } \end{gathered}$					
$\begin{gathered} \text { PE0 } \\ \text { to } \\ \text { PE7 } \end{gathered}$	PE0 to PE7/ PWMxxx to PWMxxx	$\begin{gathered} \text { Output Hi-Z } \\ \text { Input } \\ \text { enabled } \end{gathered}$	Output Hi-Z Input enabled		P : Immediately preceding status held F: Output held or Hi-Z	Output Hi-Z/Input fixed to "0"
$\begin{aligned} & \text { PF0 } \\ & \text { to } \\ & \text { PF7 } \end{aligned}$	PF0 to PF7/ AN8 to AN15					
PGO	$\begin{gathered} \hline \text { PGO/ (WOT) / } \\ \text { PPGO } \end{gathered}$					
PG1	$\begin{gathered} \hline \text { PG1/TOT0/ } \\ \text { PPG2 } \end{gathered}$					
PG2	$\begin{aligned} & \text { PG2/TOT1/ } \\ & \text { PPG4 } \end{aligned}$					
PG3	$\begin{gathered} \text { PG3/TOT2/ } \\ \text { PPG6 } \end{gathered}$					

MB91245/S Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss +6.0	V	
	AV ${ }_{\text {cc }}$	Vss - 0.3	Vss +6.0	V	$\mathrm{AV} \mathrm{cc}=\mathrm{Vcc}^{* 2}$
	$\mathrm{V}_{\text {avah }}$	Vss - 0.3	Vss +6.0	V	$\mathrm{AV} \mathrm{Vcc} \geq \mathrm{V}_{\text {AVBr }}$
	DV ${ }_{\text {cc }}$	Vss - 0.3	Vss +6.0	V	$\mathrm{DV} \mathrm{cc}=\mathrm{Vcc}^{*}$ 2
Input voltage*1	V_{1}	Vss -0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage ${ }^{* 1}$	Vo	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current ${ }^{\star 3}$	loL1	-	15	mA	*5
	lot2	-	40	mA	*6
"L" level average output current ${ }^{\star 4}$	lolav1	-	4	mA	*5
	lolav2	-	30	mA	*6
"L" level total maximum output current	EloL1	-	120	mA	*5
	EloL2	-	330	mA	*6
"L" level total average output current	Elolav1	-	50	mA	*5
	Elolav2	-	240	mA	* 6
"H" level maximum output current	loht* $^{* 3}$	-	-15	mA	*5
	loh2*3	-	-40	mA	*6
"H" level average output current	lohav1*4	-	-4	mA	*5
	lohav2*4	-	-30	mA	* 6
"H" level total maximum output current	Eloh1	-	-120	mA	*5
	Eloн2	-	-330	mA	*6
" H " level total average output current	Elohav ${ }^{* 7}$	-	-50	mA	*5
	Elohav2 ${ }^{* 7}$	-	-240	mA	* 6
Power consumption	PD	-	660	mW	
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	MASK ROM product (in single chip operation)
		-40	+105	${ }^{\circ} \mathrm{C}$	Flash memory product (in single chip operation)
		-40	+85	${ }^{\circ} \mathrm{C}$	MASK ROM/Flash memory product (in external bus operation)
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	
+B input standard (Maximum clamp current)	Інн	-	2	mA	Exclusive of dedicated input pins*8
+B input standard (Total maximum clamp current)	Σ Гıн	-	20	mA	

(Continued)

MB91245/S Series

(Continued)
*1 : The parameter is base on $\mathrm{Vss}=\mathrm{AV}$ ss $=\mathrm{DV} s \mathrm{~s}=0.0 \mathrm{~V}$.
*2 : Caution must be taken that AV cc and DV cc do not exceed V cc upon power-on and under other circumstances.
*3: The maximum output current defines the peak current value of each of the corresponding pins.
*4 : The average output current defines the average value of the current (100 ms) which passes through each of the corresponding pins. The average value represents a value calculated by multiplying the operating current by the operating rate.
*5: Output other than PA0 to PA3 pins, PB0 to PB7 pins, PC0 to PC3 pins, and PE0 to PE7 pins
*6 : (PA0 to PA3 pins, PE0 to PE7 pins) + (PB0 to PB7 pins, PC0 to PC3 pins)
The SMC pins are divided into two groups (12 pins each) and the value is calculated as the total current per group.
*7: The total average output current defines the average value of the current (100 ms) which passes through all the corresponding pins. The average value represents a value calculated by multiplying the operating current by the operating rate.
*8: +B input standard defines the current value for each of the corresponding pins.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{DV} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc AVcc DVcc	4.5	5.5	V	Recommended guaranteed operating range (MB91F248, MB91248)
		3.5	5.5	V	Guaranteed operating range*1 (MB91F248, MB91248)
		2.0	5.5	V	Guaranteed operating range for holding stop operation status*2 (MB91F248, MB91248)
Smoothing capacitor*3	Cs	1		$\mu \mathrm{F}$	Use a ceramic capacitor or a capacitor with similar frequency characteristics.
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	MASK ROM product (in single chip operation)
		-40	+105	${ }^{\circ} \mathrm{C}$	Flash memory product (in single chip operation)
		-40	+85	${ }^{\circ} \mathrm{C}$	MASK ROM/Flash memory product (in external bus operation)

*1: Exclusive of A/D operation
*2 : Internal voltage held in RAM : 1.8 V (Min)/3.6 V (Max)
*3: For how to connect the smoothing capacitor Cs , refer to the figure below.

< + B input (12 V to 16 V) conditions>

- Do not connect +B potential directly to a microcontroller pin.
- Always connect a resistor between the microcontroller pin and +B signal to limit the current. $\mathrm{l}_{\boldsymbol{н} \boldsymbol{H}}=2 \mathrm{~mA}$ per pin (Max.) [In the steady state and transient state between power-on and power-off, etc.] It can be connected to any general-purpose input port except the output pin for LCDC.
- The protection diode in the microcontroller turns the potential upon $+B$ input between the limiting resistor and microcontroller pin into " $\mathrm{Vcc}+$ protection diode ON voltage". Configure the circuit so that these are not interfered and the potential is not exceeded.

MB91245/S Series

Recommended example circuit

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91245/S Series

3. DC Specifications

(T_{A} : Recommended operating conditions; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DV} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	$\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$	Pin name		Condition	Value			Unit	Remarks	
				Min	Typ	Max				
$\left\lvert\, \begin{aligned} & \text { "H" level } \\ & \text { input } \\ & \text { voltage } \end{aligned}\right.$	Vıнs		-		-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Automotive level input pins ${ }^{* 1}$
	V_{1}	$\begin{array}{r} \mathrm{P} \\ \mathrm{P} 10 \end{array}$	$\begin{aligned} & 0 \text { to P07, } \\ & \text { to P17, P57 } \end{aligned}$	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	CMOS hysteresis input pins*2	
	VIHM		-	-	Vcc-0.3	-	$\mathrm{Vcc}+0.3$	V	MOD pins*3	
	Vihx	$\mathrm{XO},$	$\frac{\mathrm{XOA}, \mathrm{X} 1 \mathrm{~A},}{\mathrm{INIT}}$	-	0.8 Vcc	-	-	V		
"L" levelinputvoltage	VILs		-	-	Vss - 0.3	-	0.5 Vcc	V	Automotive level input pins*1	
	VIL		$\begin{aligned} & \text { 00-P07, } \\ & \text {-P17, P57 } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	CMOS hysteresis input pins*2	
	VILM		-	-	Vss - 0.3	-	Vss +0.3	V	MOD pins*3	
	VILX	xo, X	$\frac{\mathrm{X}, \mathrm{XOA}, \mathrm{X} 1 \mathrm{~A},}{}$	-	-	-	0.2 Vcc	V		
Power supply current*4	Icc	Vcc	Operating frequency : Fcp $=32 \mathrm{MHz}$ in main mode		-	55	85	mA	Flash memory product	
					-	55	85	mA	MASK ROM product	
					-	100	150	mA	In Flash-Write mode	
	Iccı		Operating $\mathrm{F}_{\mathrm{Cp}}=32 \mathrm{kHz}$ in sub	frequency : $\mathrm{Z}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ mode	-	290	450	$\mu \mathrm{A}$		
	Ic ch		$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \text { stop mode } \\ \text { stop } \end{array}$	$\mathrm{Vcc}=5 \mathrm{~V}$ in (oscillation ped)	-	95	150	$\mu \mathrm{A}$		
	Icts		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ stop mode	$\mathrm{Vcc}=5 \mathrm{~V} \text { in }$ (RTC in use)	-	390	500	$\mu \mathrm{A}$	At 4 MHz	
Input leak current	ILL	All input pins		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{DV} \mathrm{~V}_{\mathrm{cc}}= \\ & \mathrm{A} \mathrm{~V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	+5	$\mu \mathrm{A}$		
Input capacity 1	Clin_{1}	$\begin{aligned} & \text { Other } \\ & \text { DV }{ }^{\text {co, }} \\ & \text { AVs, } \\ & \text { PBO to } \\ & \text { PCO tc } \\ & \text { PEO tc } \end{aligned}$	than V_{cc}, Vss , $D V_{s s}, A V_{c c}$, PA0 to PA3, PB7, PC3, PE7	-	-	5	15	pF		
Input capacity 2	Cln^{2}		PA3, PB7, PC3, PE7	-	-	15	45	pF		
Pull-up resistance	Rup	$\overline{\text { INIT }}$		-	25	50	100	$\mathrm{k} \Omega$		

(Continued)

MB91245/S Series

(Continued)
(T_{A} : Recommended operating conditions; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DV}$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Pull-down resistance	Roown	MOD1, MOD2	-	25	50	100	k Ω	MASK ROM products only
Output "H" voltage 1	Vон1	Other than PA0 to PA3, PB0 to PB7, PC0 to PC3, PE0 to PE7	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{loH}=-4.0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} V_{c c}- \\ 0.5 \end{gathered}$	-	-	V	
Output "H" voltage 2	Vohz	PA0 to PA3, PB0 to PB7, PC0 to PC3, PE0 to PE7	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{IoH}=-30.0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}- \\ 0.5 \end{gathered}$	-	-	V	
Output "L" voltage 1	Vol1	Other than PAO to PA3, PB0 to PB7, PC0 to PC3, PE0 to PE7	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Output "L" voltage 2	Vol2	PA0 to PA3, PB0 to PB7, PC0 to PC3, PE0 to PE7	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \mathrm{loL}=30.0 \mathrm{~mA} \end{gathered}$	-	-	0.55	V	
High current output Drive capacity Phase-to-phase deviation 1	$\Delta \mathrm{V}$ он2	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, $\mathrm{n}=0$ to 5	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \text { Іон }=30.0 \mathrm{~mA} \\ \text { Maximum } \end{gathered}$ deviation of $\mathrm{V}_{\text {он }}$	0	-	90	mV	*5
High current output Drive capacity Phase-to-phase deviation 2	$\Delta \mathrm{V}$ oL2	PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, $\mathrm{n}=0$ to 5	$\begin{gathered} \mathrm{Vcc}=4.5 \mathrm{~V} \\ \text { loL }=30.0 \mathrm{~mA} \\ \text { Maximum } \end{gathered}$ deviation of Voเ2	0	-	90	mV	*5
COM0 to COM3 Output impedance	Rvcom	$\begin{aligned} & \text { COMm } \\ & (\mathrm{m}=0 \text { to } 3) \end{aligned}$	-	-	-	2.5	k Ω	
SEG00 to SEG31 Output impedance	Rvseg	$\begin{aligned} & \text { SEGn } \\ & (\mathrm{n}=00 \text { to } 31) \end{aligned}$	-	-	15	30	k Ω	
LCDC leak current	Ilcdo	$\begin{aligned} & \hline \text { COMm } \\ & (m=0 \text { to } 3), \\ & \text { SEGn, } \\ & (n=00 \text { to } 31) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	-	+0.5	$\mu \mathrm{A}$	

*1 : All input pins except X0, X1, X0A, X1A, MOD0, MOD1, MOD2 and INIT pins
*2 : Can be selected by the input level select register (PILR).
*3: MOD0, MOD1 and MOD2
*4 : They represent current values used when supplying power to the external clock from pin X1.
*5 : Defined by the maximum deviation of V онг 2 / V เц of each pin, when PWM1P0, PWM1M0, PWM2P0 and PWM2M0 in ch. 0 are simultaneously turned on. The same applies to other channels.

MB91245/S Series

4. Flash Memory Write/Erase Characteristics

Parameter	Condition	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Exclusive of internal write time prior to erase
Chip erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	5	-	s	Exclusive of internal write time prior to erase
Halfword write time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	16	3600	$\mu \mathrm{s}$	Exclusive of overhead time at system level
Chip write time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-	2.1	-	s	Exclusive of overhead time at system level
Erase/write cycle	-	10000	-	-	cycle	
Flash memory data retain time	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \\ \text { (average) } \end{gathered}$	10	-	-	year	*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB91245/S Series

5. AC Specifications

(1) Clock timing
(T_{A} : Recommended operating conditions; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{DV} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Frequency of source oscillation clock	Fc	X0, X1	-	-	4	-	MHz	
	Fca	X0A, X1A		-	32	-	kHz	
Source oscillation clock Cycle time	toyl	X0, X1		-	250	-	ns	
Input clock pulse width	Pwh , Pwl	X0		100	-	-	ns	The duty ratio normally ranges from 40% to 60\%.
Frequency of internal operating clock	f.Pb	-	-	0.0312	-	32	MHz	CPU based (CLKB)
	fcpt			0.0312	-	16	MHz	External bus based (CLKT)
	fcpp			0.0312	-	32	MHz	Peripheral based (CLKP)
Internal operating clock cycle	tcpb	-	-	31.25	-	32000	ns	CPU based (CLKB)
	tcpt			62.5	-	32000	ns	External bus based (CLKT)
	tcpp			31.25	-	32000	ns	Peripheral based (CLKP)
Input clock Rise/fall time	$\begin{aligned} & \text { tcr } \\ & \text { tcf } \end{aligned}$	X0	-	-	-	5	ns	When external clock is used
Frequency of internal base clock	Fcp	-		-	-	32	MHz	When main oscillation is at 4 MHz and PLL multiplied by 8 is used
Internal base clock Cycle time	tcp	-	-	31.25	-	-	ns	When main oscillation is at 4 MHz and PLL multiplied by 8 is used

- X0/X1 Clock Timing

MB91245/S Series

- Operations

Oscillation should be performed as described below :
[Source oscillation] : X0/X1 : 4 MHz , PLL : multiplied by 8, Internal frequency : 32 MHz : X0A/X1A : 32 kHz, PLL : no multiplied, Internal frequency : 32 kHz
Note that the PLL oscillation stabilization wait time should be set to $500 \mu \mathrm{~s}$ or more.
Example oscillation circuit

AC specifications are defined by the following measurement standard voltage values :

- Input signal waveform

Hysteresis input pin

- Output signal waveform

Output pin
0.8 V

MB91245/S Series

(2) Reset input
(T_{A} : Recommended operating conditions; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{DV} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
$\overline{\text { INIT }}$ input time	tintı	$\overline{\text { INIT }}$	-	500	-	ns	Flash memory product
				10 tcp	-	ns	MASK ROM product
				Oscillation time of oscillator* + 10 tcp $+12 \mu \mathrm{~s}$	-	ms	In stop mode

*: The oscillation time of the oscillator refers to the time when the amplitude has reached 90%. The oscillation time of the crystal oscillator ranges from several ms to tens of ms . The oscillation time of the ceramic oscillator ranges from several hundreds to several ms , while that of the external clock is 0 ms .

- In stop mode

MB91245/S Series

[External reset input specifications (INIT) and internal reset signal cancellation timing]

- When an external reset input is generated, a maximum of 256 tcp is designed to be spent until it reaches the internal reset signal to transmit all reset signals to the internal logic. (Max $8 \mu \mathrm{~s}$ at 32 MHz)
- The following chart shows how to set the timing for instruction execution start (start of application operation) after external reset input.

Time from external reset input to instruction start $=$ Max 256 tcp +61 tcp

- Timing Chart

Internal reset

[Pin state in external bus mode]

In the external bus mode, it is not guaranteed to hold the RAM value upon external reset ($\overline{\mathrm{NITT}}=$ " 0 ") input.
In the external bus mode, the value of the internal bus is output to each pin during the time from the internal reset input to its cancellation as well as the RAM value is not guaranteed to be held.

- Timing Chart (Pin State for External Bus Mode : 1)

Internal reset
$\begin{aligned} & \text { Pin state of } \\ & \text { external bus }\end{aligned} \longrightarrow$ Max 256 tcp
Value immediately
before reset

MB91245/S Series

It can be avoided by the following external reset input to continue $\mathrm{Hi}-\mathrm{Z}$.

- Timing Chart (Pin State for External Bus Mode : 2)

MB91245/S Series

(3) Power-on Conditions
(T_{A} : Recommended operating conditions; $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Power supply rising time	t_{R}	Vcc	-	0.05	30	ms	
Power supply start voltage	Voff			-	0.2	V	
Power supply peak voltage	Von			3.5	-	V	
Power supply cut-off time	toff			50	-	ms	Due to repetitive operation

Power supply drop time, power supply voltages and external reset input to retain RAM data in MB91245/S
Satisfy the following reset input standard to retain the RAM data used in the single chip mode.

Vcc (V)	Voltage drop time	External reset input standard (INIT)
$4.0 \mathrm{~V} \rightarrow 3.5 \mathrm{~V}$ dropped	Min 256 tcp	Min 256 tcp

To retain RAM data, enter 256 tcp of $\overline{\mathrm{INIT}}$ or more before dropping V cc to 3.5 V or lower.

MB91245/S Series

(4) Clock Output Timing

$(\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V, V ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}$)							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	tovc	SYSCLK	-	tcpt	-	ns	*1
SYSCLK $\uparrow \rightarrow$ SYSCLK \downarrow	tснсL	SYSCLK		tovc / 2-10	tcyc / $2+10$	ns	*2
SYSCLK $\downarrow \rightarrow$ SYSCLK \uparrow	tcıch	SYSCLK		tovc / 2-10	tovc / $2+10$	ns	*3

*1: tcyc is the frequency of one clock cycle including the gear cycle.
*2 : The ratings are based on conditions with "gear cycle $\times 1$ ".
When the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, perform calculation by substituting $1 / 2,1 / 4$ or $1 / 8$ for " n " in the following formula, respectively.

$$
(1 / 2 \times 1 / n) \times \operatorname{tcyc}-10
$$

*3: This is the value for the gear cycle $\times 1$.

MB91245/S Series

(5) Normal Bus Access : Read/Write Operation
($\mathrm{Vcc}=4.0 \mathrm{~V}$ to 5.5 V , V ss $=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}$ setup	tcstch	$\frac{\text { SYSCLK }}{\text { CS0 to }} \overline{\mathrm{CS3}}$	AWRxL: W02 = 0	3	-	ns	
	tcsolch		AWRxL: W02 = 1	-8	-	ns	
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3}$ hold	tchesh		-	3	tovc / $2+25$	ns	
Address setup	tasch	$\begin{gathered} \text { SYSCLK } \\ \text { A00 to A15 } \end{gathered}$		3	-	ns	
	taswL	$\overline{\text { WRO, }} \overline{\text { WR1 }}$ A00 to A15		3	-	ns	
	taskl	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { A00 to A15 } \end{gathered}$		3	-	ns	
Address hold	tchax	SYSCLK A00 to A15		3	tovc / $2+25$	ns	
	twhax	$\begin{aligned} & \overline{\text { WR0 }}, \overline{\text { WR1 }} \\ & \text { A00 to A15 } \end{aligned}$		3	-	ns	
	trhax	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { A00 to A15 } \end{gathered}$		3	-	ns	
Valid address \rightarrow valid data input time	tavov	$\begin{aligned} & \text { A00 to A15 } \\ & \text { D00 to D15 } \end{aligned}$		-	$\begin{array}{\|c\|} \hline 3 / 2 \times \text { tcyc }+ \\ 45 \end{array}$	ns	*1, *2
$\overline{\text { WR0, }}$ WR1 delay time	tchwL	SYSCLK		-	8	ns	
$\overline{\text { WR0, }}$ WR1 delay time	tchwh	WR0, WR1		-	8	ns	
$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$ minimum pulse width	twwwh	$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$		tcyc - 5	-	ns	
$\overline{\overline{\text { WRO}}}, \overline{\text { WR1 }} \uparrow \rightarrow$ data hold time	twhox	D00 to D15		3	-	ns	
$\overline{\mathrm{RD}}$ delay time	tchri	SYSCLK		-	6	ns	
$\overline{\mathrm{RD}}$ delay time	tснrн	$\overline{\mathrm{RD}}$		-	6	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input time	trLDv	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { D00 to D15 } \end{gathered}$		-	tove - 30	ns	*1
Data setup $\rightarrow \overline{\mathrm{RD}} \uparrow$ time	toser			20	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhdx			0	-	ns	
$\overline{\overline{R D}}$ minimum pulse width	tRLRH	$\overline{\mathrm{RD}}$		tcyc - 5	-	ns	
$\overline{\overline{\text { AS }} \text { setup }}$	taslch	$\frac{\mathrm{SYSCLK}}{\overline{\mathrm{AS}}}$		3	-	ns	
$\overline{\text { AS }}$ hold	tchash			3	tovc / $2+25$	ns	

*1: If the bus is expanded by automatic wait insertion or RDY input, add time (tcre \times the number of expanded cycles) to the rated value.
*2 : The ratings are based on conditions with "gear cycle $\times 1$ ". If the gear cycle is set to $1 / 2$ to $1 / 16$, perform calculation by substituting the corresponding value for " n " in the following formula.
Formula: $3 /(2 n) \times$ tcyc +45

MB91245/S Series

MB91245/S Series

(6) Ready Input Timing

$(\mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}$ to 5.5 V , V ss $=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
RDY setup time \rightarrow SYSCLK \downarrow	trovs	SYSCLK RDY	-	10	-	ns	
SYSCLK $\uparrow \rightarrow$ RDY hold time	trovh	SYSCLK RDY		0	-	ns	

MB91245/S Series

(7) UART Timing
($\mathrm{T}_{\mathrm{A}}:$ Recommended operating conditions; $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock Cycle time	tscyc	SCKO	-	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCKO, SOTO		-80	+80	ns	For internal shift clock
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCK } \uparrow \end{aligned}$	tivsh	SCKO, SINO		100	-	ns	$\mathrm{CL}=80 \mathrm{pF}+1 \cdot \mathrm{TTL}$
$\begin{aligned} & \text { SCK } \uparrow \rightarrow \\ & \text { Valid SIN hold time } \end{aligned}$	tshix			60	-	ns	
Serial clock "H" pulse width	tshsL	SCKO	-	4 tcp	-	ns	For external shift clock mode output pin, $\mathrm{CL}=80 \mathrm{pF}+1 \cdot \mathrm{TTL}$
Serial clock "L" pulse width	tsısh			4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCKO, SOTO		-	150	ns	
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCK } \uparrow \end{aligned}$	tivsh	SCKO, SINO		60	-	ns	
$\begin{aligned} & \text { SCK } \uparrow \rightarrow \\ & \text { Valid SIN hold time } \end{aligned}$	tshix			60	-	ns	

Notes: - The above ratings are the values for clock synchronous mode.

- C_{L} is a load capacitance connected to pins during testing.

MB91245/S Series

- Internal Shift Clock Mode

- External Shift clock Mode

MB91245/S Series

(8) Timer Input Timing
(T_{A} : Recommended operating conditions; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{V} s \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	$\begin{aligned} & \text { tтwwh } \\ & \text { tтww } \end{aligned}$	TINO to TIN2, PWC INO to IN3	-	4 tcp	-	ns	

- Timer Input Timing

(9) External Interrupt Timing
(T_{A} : Recommended operating conditions; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	tinth, INTL	INT0 to INT7	-	3 tcp	-	ns	

- External interrupt input timing

Note : For INTx level detection time required to recover from the stop mode, add the stabilization time for the internal step-down circuit ($12 \mu \mathrm{~s}$).

MB91245/S Series

6. A/D Converter Electrical Characteristics

(1) Electrical Characteristics
(T_{A} : Recommended operating conditions; $\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Non-linearity error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vот	ANO to AN31	$\begin{gathered} \hline \mathrm{AV} \text { ss } \\ -1.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \mathrm{AV} \text { ss } \\ +0.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \\ \\ \mathrm{A} \mathrm{~V}_{\mathrm{ss}} \\ +2.5 \mathrm{LSB} \end{gathered}$	V	$\begin{aligned} & 1 \text { LSB }= \\ & (\text { AVRH }- \text { AVss }) / 1024 \end{aligned}$
Full-scale transition voltage	$V_{\text {FSt }}$	ANO to AN31	$\begin{gathered} \hline \text { AVRH } \\ -3.5 \mathrm{LSB} \end{gathered}$	$\begin{array}{c\|} \hline \text { AVRH } \\ -1.5 \mathrm{LSB} \end{array}$	$\begin{gathered} \text { AVRH } \\ +0.5 \text { LSB } \end{gathered}$	V	
Sampling time	tsmp	-	1.375	-	-	$\mu \mathrm{s}$	*1
Compare time	tcmp	-	1.375	-	-	$\mu \mathrm{s}$	*2
A/D conversion time	tcnv	-	2.750	-	-	$\mu \mathrm{s}$	*
Analog port input current	Iain	AN0 to AN31	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {avss }} \leq \mathrm{V}_{\text {AIN }} \leq \mathrm{V}_{\text {avcc }}$
Analog input voltage	$V_{\text {AIN }}$	AN0 to AN31	0	-	AVRH	V	
Standard voltage	AVR +	AVRH	4.0	-	AVcc	V	
Power supply	$I_{\text {A }}$	AVcc	-	2.4	4.7	mA	
current*4	Іан		-	-	5	$\mu \mathrm{A}$	* 5
Standard voltage supply current	IR	AVRH	-	500	900	$\mu \mathrm{A}$	$\mathrm{V}_{\text {AVRH }}=5.0 \mathrm{~V}$
	IRH	AVRH	-	-	5	$\mu \mathrm{A}$	*
Variation between channels	-	ANO to AN31	-	-	5	LSB	

*1: When Fcp is $32 \mathrm{MHz}:$ tsmp $=($ Rext + Rin $) \times$ Cin $\times 7=\mathrm{ST} \times$ CLKP cycle $=2$ channels $\times 31.25 \mathrm{~ns}=1.375 \mu \mathrm{~s}$
*2: When Fcp is $32 \mathrm{MHz}:$ tcmp $=$ CKIN $\times 11=$ CT \times CLKP cycle $\times 11=4 \mathrm{~h} \times 31.25 \mathrm{~ns} \times 11=1.375 \mu \mathrm{~s}$
*3: This represents the conversion time per channel when tsmp and tcmp are selected while Fcp is 32 MHz .
*4: The current values are targeted temporary ratings.
*5 : This defines the power supply current when the A/D converter is not in operation and the CPU is stopped (at "Vcc = AVcc = AVRH = 5.0 V")

Notes : - As AVRH becomes smaller, the error becomes greater.

- Use the output impedance rs of the external circuit for analog input under the following conditions : Output impedance rs of the external circuit $=5 \mathrm{k} \Omega$ (Max)
- If the output impedance of the external circuit is too high, the sampling time of the analog voltage may not be sufficient.
When placing a DC blocking capacitor between the external circuit and input pin, set the capacitance to the value calculated by multiplying CsH by several thousands as a guideline in order to minimize the impact from dividing voltage capacitance with Csн.

MB91245/S Series

- Analog Input Equivalent Circuit

<Recommended parameter values and tentative guideline for each element>

$$
\begin{aligned}
& \mathrm{rs}=5 \mathrm{k} \Omega \text { or less } \\
& \mathrm{RsH}=\text { approx. } 2.5 \mathrm{k} \Omega \\
& \mathrm{CsH}=\text { approx. } 10 \mathrm{pF}
\end{aligned}
$$

Note : These element parameters should be regarded as tentative values used only for design purposes. They are not guaranteed values.

MB91245/S Series

(2) Term Definitions

- Resolution

Level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , the analog voltage can be resolved into $2^{10}=1024$.

- Total error

Difference between actual and theoretical values, which is a total value derived from an offset error, gain error, non-linearity error and noise.

- Linearity error

Deviation between the value along a straight line connecting the zero transition point ("00 00000000 " \leftarrow "00 00000001 ") of a device and the full-scale transition point ("11 11111110 " $\leftarrow \rightarrow$ "11 1111 1111") compared with the actual conversion values obtained.

- Differential linearity error

Deviation of input voltage, which is required for changing output code by1 LSB, from an ideal value.

MB91245/S Series

- 10-bit A/D Converter- Conversion Characteristics

$$
\begin{aligned}
1 \mathrm{LSB} & =\frac{\mathrm{V}_{\mathrm{FST}}-\mathrm{VOT}_{\mathrm{OT}}}{1022} \\
\text { Linearity error } & =\frac{\mathrm{V}_{\mathrm{NT}-}\left(1 \mathrm{LSB} \times \mathrm{N}+\mathrm{V}_{\mathrm{OT}}\right)}{1 \mathrm{LSB}}[\mathrm{LSB}]
\end{aligned}
$$

$$
\begin{equation*}
\text { Differential linearity error }=\frac{\mathrm{V}(\mathrm{~N}+1) \mathrm{T}-\mathrm{V}_{\mathrm{NT}}}{1 \mathrm{LSB}}-1 \tag{LSB}
\end{equation*}
$$

$\mathrm{N} \quad$: A/D converter digital output value.
Vот : Voltage at which digital output transits from 000н to 001н.
$V_{\text {FST }}$: Voltage at which digital output transits from 3FEн to 3FFн.
$V_{N T}$: A voltage at which digital output transits from $(N-1)$ to N.

MB91245/S Series

EXAMPLE CHARACTERISTICS

(1) Power supply current (at main RUN)

(3) Power supply current (at stop : when oscillation stops)

(2) Power supply current (at sub RUN)

(4) Power supply current (at stop: when using RTC 4 MHz)

(Continued)

MB91245/S Series

(5) A/D power supply current

(7) " H " level input voltage/" L " level input voltage (Automotive input)

(6) A/D reference voltage supply current

(8) "H" level input voltage/" L " level input voltage (CMOS hysteresis input)

(Continued)

MB91245/S Series

(Continued)
(9) "H" level output voltage

(11) "L" level output voItage

(10) " H " level output voltage

(12) "L" level output voItage

MB91245/S Series

ORDERING INFORMATION

Part number	Package	Remarks
MB91V245ACR-ES	401-pin ceramic PGA (PGA-401C-A02)	Evaluation product
MB91F248PFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Dual clock product
MB91F248SPFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Single clock product
MB91247PFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Dual clock product
MB91247SPFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Single clock product
MB91248PFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Dual clock product
MB91248SPFV-GSE1	144-pin plastic LQFP (FPT-144P-M08)	Single clock product

MB91245/S Series

PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB91245/S Series

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
 "Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

[^1]: *: For information about the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

[^2]: *1 : The lower 16 bits (DTC [15:0]) of DMACA0 to DMACA4 cannot be accessed in bytes.

